|
|
from transformers import AutoProcessor, AutoModelForImageTextToText |
|
|
import torch |
|
|
import onnx |
|
|
import onnxruntime as ort |
|
|
import numpy as np |
|
|
import os |
|
|
from tqdm import tqdm |
|
|
from transformers import AutoConfig, AutoTokenizer |
|
|
from typing import List, Tuple |
|
|
from axengine import InferenceSession |
|
|
from ml_dtypes import bfloat16 |
|
|
from utils.infer_func import InferManager |
|
|
import argparse |
|
|
from PIL import Image |
|
|
import torchvision.transforms as T |
|
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
|
|
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
|
|
def build_transform(input_size): |
|
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
|
transform = T.Compose([ |
|
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
|
T.ToTensor(), |
|
|
T.Normalize(mean=MEAN, std=STD) |
|
|
]) |
|
|
return transform |
|
|
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
|
best_ratio_diff = float('inf') |
|
|
best_ratio = (1, 1) |
|
|
area = width * height |
|
|
for ratio in target_ratios: |
|
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
|
if ratio_diff < best_ratio_diff: |
|
|
best_ratio_diff = ratio_diff |
|
|
best_ratio = ratio |
|
|
elif ratio_diff == best_ratio_diff: |
|
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
|
best_ratio = ratio |
|
|
return best_ratio |
|
|
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): |
|
|
orig_width, orig_height = image.size |
|
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
|
|
|
target_ratios = set( |
|
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
|
i * j <= max_num and i * j >= min_num) |
|
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
|
target_height = image_size * target_aspect_ratio[1] |
|
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
|
processed_images = [] |
|
|
for i in range(blocks): |
|
|
box = ( |
|
|
(i % (target_width // image_size)) * image_size, |
|
|
(i // (target_width // image_size)) * image_size, |
|
|
((i % (target_width // image_size)) + 1) * image_size, |
|
|
((i // (target_width // image_size)) + 1) * image_size |
|
|
) |
|
|
|
|
|
split_img = resized_img.crop(box) |
|
|
processed_images.append(split_img) |
|
|
assert len(processed_images) == blocks |
|
|
if use_thumbnail and len(processed_images) != 1: |
|
|
thumbnail_img = image.resize((image_size, image_size)) |
|
|
processed_images.append(thumbnail_img) |
|
|
return processed_images |
|
|
|
|
|
def load_image(image_file, input_size=448, max_num=12): |
|
|
image = Image.open(image_file).convert('RGB') |
|
|
transform = build_transform(input_size=input_size) |
|
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
|
pixel_values = [transform(image) for image in images] |
|
|
pixel_values = torch.stack(pixel_values) |
|
|
return pixel_values |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
""" |
|
|
python3 infer_axmodel.py --vit_model vit-models/internvl_vit_model_1x3x448x448.axmodel --images examples/image_0.jpg |
|
|
""" |
|
|
prompt = None |
|
|
parser = argparse.ArgumentParser(description="Model configuration parameters") |
|
|
parser.add_argument("--hf_model", type=str, default="./InternVL3_5-1B", |
|
|
help="Path to HuggingFace model") |
|
|
parser.add_argument("--axmodel_path", type=str, default="./InternVL3_5-1B_axmodel", |
|
|
help="Path to save compiled axmodel of llama model") |
|
|
parser.add_argument("--vit_model", type=str, default=None, help="Path to save compiled axmodel of llama model") |
|
|
parser.add_argument("-i", "--images", nargs='+', type=str, default=None, |
|
|
help="Path to the test image.") |
|
|
parser.add_argument("-q", "--question", type=str, default="请你描述这幅图的内容.", |
|
|
help="Your question that you want to ask the model.") |
|
|
args = parser.parse_args() |
|
|
|
|
|
hf_model_path = args.hf_model |
|
|
axmodel_path = args.axmodel_path |
|
|
images = args.images |
|
|
prompt = args.question |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
embeds = np.load(os.path.join(axmodel_path, "model.embed_tokens.weight.npy")) |
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(hf_model_path) |
|
|
config = AutoConfig.from_pretrained(hf_model_path, trust_remote_code=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_imgs_path = args.images |
|
|
vit_axmodel_path = args.vit_model |
|
|
|
|
|
|
|
|
pixel_values_list = [] |
|
|
if test_imgs_path is not None: |
|
|
for img_path in test_imgs_path: |
|
|
pixel_values = load_image(img_path, input_size=448, max_num=1) |
|
|
pixel_values_list.append(pixel_values) |
|
|
print(f"输入图像数: {len(pixel_values_list)}") |
|
|
print("preprocess image done!") |
|
|
|
|
|
|
|
|
vit_session = InferenceSession(vit_axmodel_path) |
|
|
vit_output_list = [] |
|
|
for idx, pixel_values in enumerate(pixel_values_list): |
|
|
vit_output = vit_session.run(None, {"image": pixel_values.numpy()})[0] |
|
|
vit_output_list.append(vit_output.copy()) |
|
|
|
|
|
print(f"vit_output.shape is {vit_output_list[0].shape}, vit feature extract done!") |
|
|
|
|
|
prompt = "<|im_start|>system\n你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型, 英文名叫 InternVL3, 是一个有用无害的人工智能助手, 擅长思考和回答用户的问题. 请你在回答问题时使用简体中文.<|im_end|>\n" |
|
|
question = args.question |
|
|
prompt += "<|im_start|>user\n" + question |
|
|
|
|
|
if len(pixel_values_list) > 0: |
|
|
for idx in range(len(pixel_values_list)): |
|
|
prompt += "\n<img>" + "<IMG_CONTEXT>" * 256 + "</img>\n" |
|
|
prompt += "<|im_end|>\n<|im_start|>assistant\n" |
|
|
print(f"prompt is {prompt}") |
|
|
token_ids = tokenizer.encode(prompt) |
|
|
|
|
|
image_start_indices = np.where(np.array(token_ids) == 151669)[0].tolist() |
|
|
prefill_data = np.take(embeds, token_ids, axis=0) |
|
|
prefill_data = prefill_data.astype(bfloat16) |
|
|
token_len = len(token_ids) |
|
|
|
|
|
for idx, image_start_index in enumerate(image_start_indices): |
|
|
image_insert_index = image_start_index + 1 |
|
|
prefill_data[image_insert_index : image_insert_index + 256] = vit_output_list[idx][0, :, :] |
|
|
|
|
|
|
|
|
cfg = config.llm_config |
|
|
|
|
|
eos_token_id = None |
|
|
if isinstance(cfg.eos_token_id, list) and len(cfg.eos_token_id) > 1: |
|
|
eos_token_id = cfg.eos_token_id |
|
|
|
|
|
slice_len = 128 |
|
|
prefill_max_len = 1024 - 1 |
|
|
max_seq_len = 2048 - 1 |
|
|
|
|
|
imer = InferManager(cfg, axmodel_path, max_seq_len=max_seq_len) |
|
|
|
|
|
token_ids = imer.prefill(tokenizer, token_ids, prefill_data, slice_len=slice_len) |
|
|
imer.decode(tokenizer, token_ids, embeds, slice_len=slice_len, eos_token_id=eos_token_id) |
|
|
print("\n") |