# gui.py import gradio as gr from rag_engine import ask_question, build_index, stream_answer from config import PORT import time chat_history = [] def handle_upload(file): if file is None: return "❌ 请上传文件", "" try: result = build_index(file.name) # file.name 是本地路径 return result, "" except Exception as e: return f"❌ 构建索引失败:{str(e)}", "" def handle_chat(message, history): history = history or [] if not message.strip(): return "", history try: # 使用流式响应 history.append((message, "")) full_response = "" # 获取流式响应生成器 answer_generator = stream_answer(message) # 逐个token添加到聊天历史 for token in answer_generator: full_response += token history[-1] = (message, full_response) yield "", history time.sleep(0.02) # 添加微小延迟使输出更平滑 # 流结束后添加一点停顿 time.sleep(0.1) yield "", history except Exception as e: history.append((message, f"⚠️ 出错了:{str(e)}")) return "", history with gr.Blocks(title="RAG 文档问答系统") as demo: gr.Markdown("## 🤖 AXERA RAG 文档问答\n请上传 PDF 或 TXT 文件并提问") with gr.Row(): with gr.Column(scale=1): file_input = gr.File(label="📄 上传文件", file_types=[".pdf", ".txt"]) upload_btn = gr.Button("📥 上传并构建索引") upload_status = gr.Textbox(label="", interactive=False) with gr.Column(scale=2): chatbot = gr.Chatbot(height=400, label="🧠 问答对话") with gr.Row(): message = gr.Textbox(placeholder="请输入你的问题,按 Shift + Enter 发送", show_label=False, lines=2) send_btn = gr.Button("🚀 发送") upload_btn.click(fn=handle_upload, inputs=[file_input], outputs=[upload_status, message]) send_btn.click(fn=handle_chat, inputs=[message, chatbot], outputs=[message, chatbot]) message.submit(fn=handle_chat, inputs=[message, chatbot], outputs=[message, chatbot]) # 启用队列并启动 demo.queue().launch(server_port=PORT)