import torch from torch import nn class MappingUnit(nn.Module): def __init__(self,dim): super().__init__() self.norm_token = nn.LayerNorm(dim) self.proj_1 = nn.Linear(dim,dim,bias = False) self.proj_2 = nn.Linear(dim,dim,bias = False) self.proj_3 = nn.Linear(dim,dim,bias = False) self.gelu = nn.GELU() def forward(self, x): x = self.norm_token(x) u, v = x, x u = self.proj_1(u) u = self.gelu(u) v = self.proj_2(v) g = u * v x = self.proj_3(g) return x class InteractionUnit(nn.Module): def __init__(self,dim): super().__init__() self.norm_token = nn.LayerNorm(dim) self.gelu = nn.GELU() def forward(self, x): x = self.norm_token(x) dim0 = x.shape[0] dim1 = x.shape[1] dim2 = x.shape[2] x = x.reshape([dim0,dim1*dim2]) x = self.gelu(x) x = x.reshape([dim0,dim1,dim2]) return x class InteractorBlock(nn.Module): def __init__(self, d_model): super().__init__() self.mapping = MappingUnit(d_model) self.interaction = InteractionUnit(d_model) def forward(self, x): residual = x x = self.interaction(x) x = x + residual residual = x x = self.mapping(x) out = x + residual return out class Interactor(nn.Module): def __init__(self, d_model, num_layers): super().__init__() self.model = nn.Sequential( *[InteractorBlock(d_model) for _ in range(num_layers)] ) def forward(self, x): return self.model(x)