import torch from torch import nn, Tensor from typing import List import math class MLP(nn.Module): def __init__(self,dim): super().__init__() self.proj_1 = nn.Linear(dim,dim,bias=False) self.proj_2 = nn.Linear(dim,dim,bias=False) self.gelu = nn.GELU() def forward(self, x): x = self.proj_1(x) x = self.gelu(x) x = self.proj_2(x) return x class LocalMappingUnit(nn.Module): def __init__(self,dim): super().__init__() self.mapping = MLP(dim) self.norm = nn.LayerNorm(dim,elementwise_affine=False) def forward(self, x): x = self.norm(x) x = self.mapping(x) return x class GlobalMappingUnit(nn.Module): def __init__(self, dim,heads): super().__init__() self.num_heads = heads self.hidden_dim = dim self.head_dim = dim // self.num_heads self.norm = nn.LayerNorm(dim,elementwise_affine=False) assert self.head_dim * self.num_heads == self.hidden_dim def forward(self, x): batch_size, seq_len, _ = x.size() x = self.norm(x) P,S = x,x P = P.view(batch_size, seq_len, self.num_heads, self.head_dim).permute(0, 2, 1, 3) S = S.view(batch_size, seq_len, self.num_heads, self.head_dim).permute(0, 2, 1, 3) attention_scores = P @ S.transpose(-1, -2) / math.sqrt(self.head_dim) attention_weights = torch.softmax(attention_scores, dim=-1) context = attention_weights @ S context = context.transpose(1, 2).contiguous().view(batch_size, seq_len, self.hidden_dim) return context class SmallFormerBlock(nn.Module): def __init__(self, d_model,heads): super().__init__() self.local_mapping = LocalMappingUnit(d_model) self.global_mapping = GlobalMappingUnit(d_model,heads) def forward(self, x): residual = x x = self.global_mapping(x) x = x + residual residual = x x = self.local_mapping(x) out = x + residual return out class SmallFormer(nn.Module): def __init__(self, d_model,heads, num_layers): super().__init__() self.model = nn.Sequential( *[SmallFormerBlock(d_model,heads) for _ in range(num_layers)] ) def forward(self, x): return self.model(x)