Update app.py
Browse files
app.py
CHANGED
|
@@ -3,46 +3,31 @@ import requests
|
|
| 3 |
import json
|
| 4 |
import datetime
|
| 5 |
import os
|
| 6 |
-
from dotenv import load_dotenv
|
| 7 |
-
|
| 8 |
-
# Load environment variables from .env file
|
| 9 |
-
load_dotenv(dotenv_path=os.path.join(os.path.dirname(__file__), ".env"))
|
| 10 |
-
|
| 11 |
-
# Nebius API configuration
|
| 12 |
-
NEBIUS_API_URL = os.getenv("NEBIUS_API_URL")
|
| 13 |
-
NEBIUS_API_KEY = os.getenv("NEBIUS_API_KEY")
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# --- MCP Protocol Support ---
|
| 17 |
-
# This is a placeholder for MCP integration. In a real scenario, you would use the MCP protocol to wrap/unwrap requests and responses.
|
| 18 |
def mcp_supported_call(payload, endpoint, headers):
|
| 19 |
-
# Here, you could add MCP-specific headers or payload structure if needed
|
| 20 |
-
# For now, this just passes through to the Nebius API
|
| 21 |
response = requests.post(endpoint, json=payload, headers=headers)
|
| 22 |
return response
|
| 23 |
|
| 24 |
-
|
| 25 |
-
# Function to call Nebius API directly (now MCP supported)
|
| 26 |
def call_nebius_api(query, context_data=""):
|
| 27 |
try:
|
| 28 |
-
# Prepare payload for Nebius API
|
| 29 |
nebius_payload = {
|
| 30 |
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
| 31 |
"messages": [{"role": "user", "content": query}],
|
| 32 |
"max_tokens": 1000,
|
| 33 |
"temperature": 0.7,
|
| 34 |
}
|
| 35 |
-
|
| 36 |
-
# Call Nebius API
|
| 37 |
headers = {
|
| 38 |
"Authorization": f"Bearer {NEBIUS_API_KEY}",
|
| 39 |
"Content-Type": "application/json",
|
| 40 |
}
|
| 41 |
response = mcp_supported_call(nebius_payload, NEBIUS_API_URL, headers)
|
| 42 |
-
|
| 43 |
if response.status_code != 200:
|
| 44 |
return f"Error: Nebius API request failed - {response.text}"
|
| 45 |
-
|
| 46 |
nebius_response = response.json()
|
| 47 |
result = (
|
| 48 |
nebius_response.get("choices", [{}])[0]
|
|
@@ -50,12 +35,9 @@ def call_nebius_api(query, context_data=""):
|
|
| 50 |
.get("content", "No response")
|
| 51 |
)
|
| 52 |
return result
|
| 53 |
-
|
| 54 |
except Exception as e:
|
| 55 |
return f"Error: {str(e)}"
|
| 56 |
|
| 57 |
-
|
| 58 |
-
# Function to humanize AI text using another API call with a different model (now MCP supported)
|
| 59 |
def humanize_text(ai_response):
|
| 60 |
try:
|
| 61 |
humanize_prompt = f"""Please rewrite the following AI response to make it sound more natural, conversational, and human-like.
|
|
@@ -65,39 +47,28 @@ def humanize_text(ai_response):
|
|
| 65 |
{ai_response}
|
| 66 |
|
| 67 |
Humanized version:"""
|
| 68 |
-
|
| 69 |
-
# Use DeepSeek model for humanization - excellent at conversational and creative responses
|
| 70 |
nebius_payload = {
|
| 71 |
-
"model": "deepseek-ai/DeepSeek-R1",
|
| 72 |
"messages": [{"role": "user", "content": humanize_prompt}],
|
| 73 |
"max_tokens": 1200,
|
| 74 |
-
"temperature": 0.9,
|
| 75 |
}
|
| 76 |
-
|
| 77 |
headers = {
|
| 78 |
"Authorization": f"Bearer {NEBIUS_API_KEY}",
|
| 79 |
"Content-Type": "application/json",
|
| 80 |
}
|
| 81 |
response = mcp_supported_call(nebius_payload, NEBIUS_API_URL, headers)
|
| 82 |
-
|
| 83 |
if response.status_code != 200:
|
| 84 |
-
return ai_response
|
| 85 |
-
|
| 86 |
nebius_response = response.json()
|
| 87 |
humanized_result = (
|
| 88 |
nebius_response.get("choices", [{}])[0]
|
| 89 |
.get("message", {})
|
| 90 |
.get("content", ai_response)
|
| 91 |
)
|
| 92 |
-
# Only return the humanized response, not the prompt or any instructions
|
| 93 |
-
# Remove everything before the first line break if the model echoes the prompt or instructions
|
| 94 |
if "Humanized version:" in humanized_result:
|
| 95 |
-
humanized_result = humanized_result.split("Humanized version:", 1)[
|
| 96 |
-
-1
|
| 97 |
-
].strip()
|
| 98 |
-
# Remove any leading prompt/instruction lines (e.g., if model repeats the prompt or says what it's doing)
|
| 99 |
lines = humanized_result.splitlines()
|
| 100 |
-
# Remove lines that look like instructions or meta-comments
|
| 101 |
filtered_lines = [
|
| 102 |
line
|
| 103 |
for line in lines
|
|
@@ -118,43 +89,30 @@ def humanize_text(ai_response):
|
|
| 118 |
)
|
| 119 |
)
|
| 120 |
]
|
| 121 |
-
# Join the remaining lines, strip leading/trailing whitespace
|
| 122 |
cleaned = "\n".join(filtered_lines).strip()
|
| 123 |
-
# If nothing left after cleaning, fall back to the original humanized_result
|
| 124 |
return cleaned if cleaned else humanized_result
|
| 125 |
-
|
| 126 |
except Exception as e:
|
| 127 |
-
return ai_response
|
| 128 |
-
|
| 129 |
|
| 130 |
-
# --- Additional Functionality ---
|
| 131 |
def save_conversation(query, ai_response, humanized_response, context_data):
|
| 132 |
-
"""Save the conversation to a local file with timestamp."""
|
| 133 |
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 134 |
with open("conversation_history.txt", "a", encoding="utf-8") as f:
|
| 135 |
f.write(
|
| 136 |
f"[{timestamp}]\nQuery: {query}\nContext: {context_data}\nAI Response: {ai_response}\nHumanized: {humanized_response}\n{'-' * 40}\n"
|
| 137 |
)
|
| 138 |
|
| 139 |
-
|
| 140 |
def clear_history():
|
| 141 |
-
"""Clear the conversation history file."""
|
| 142 |
open("conversation_history.txt", "w").close()
|
| 143 |
return "History cleared."
|
| 144 |
|
| 145 |
-
|
| 146 |
def load_history():
|
| 147 |
-
"""Load the conversation history file."""
|
| 148 |
try:
|
| 149 |
with open("conversation_history.txt", "r", encoding="utf-8") as f:
|
| 150 |
return f.read()
|
| 151 |
except FileNotFoundError:
|
| 152 |
return "No history found."
|
| 153 |
|
| 154 |
-
|
| 155 |
-
# --- More Advanced Features ---
|
| 156 |
def export_history_to_file(filename="conversation_export.txt"):
|
| 157 |
-
"""Export the conversation history to a user-specified file."""
|
| 158 |
try:
|
| 159 |
with (
|
| 160 |
open("conversation_history.txt", "r", encoding="utf-8") as src,
|
|
@@ -165,9 +123,7 @@ def export_history_to_file(filename="conversation_export.txt"):
|
|
| 165 |
except Exception as e:
|
| 166 |
return f"Export failed: {e}"
|
| 167 |
|
| 168 |
-
|
| 169 |
def search_history(keyword):
|
| 170 |
-
"""Search for a keyword in the conversation history."""
|
| 171 |
try:
|
| 172 |
with open("conversation_history.txt", "r", encoding="utf-8") as f:
|
| 173 |
lines = f.readlines()
|
|
@@ -176,14 +132,12 @@ def search_history(keyword):
|
|
| 176 |
except FileNotFoundError:
|
| 177 |
return "No history found."
|
| 178 |
|
| 179 |
-
|
| 180 |
def delete_last_conversation():
|
| 181 |
-
"""Delete the last conversation from the history file."""
|
| 182 |
try:
|
| 183 |
with open("conversation_history.txt", "r", encoding="utf-8") as f:
|
| 184 |
content = f.read().strip().split("-" * 40)
|
| 185 |
if len(content) > 1:
|
| 186 |
-
content = content[:-1]
|
| 187 |
with open("conversation_history.txt", "w", encoding="utf-8") as f:
|
| 188 |
f.write(("-" * 40).join(content).strip())
|
| 189 |
return "Last conversation deleted."
|
|
@@ -193,28 +147,18 @@ def delete_last_conversation():
|
|
| 193 |
except FileNotFoundError:
|
| 194 |
return "No history found."
|
| 195 |
|
| 196 |
-
|
| 197 |
-
# Gradio interface function
|
| 198 |
def gradio_interface(query, context_data, humanize=False, save=False):
|
| 199 |
if not query.strip():
|
| 200 |
return "Please enter a query.", "", load_history()
|
| 201 |
-
|
| 202 |
-
# Get initial AI response
|
| 203 |
ai_response = call_nebius_api(query, context_data)
|
| 204 |
-
|
| 205 |
-
# If humanization is enabled and we got a valid response, humanize it
|
| 206 |
if humanize and not ai_response.startswith("Error:"):
|
| 207 |
humanized_response = humanize_text(ai_response)
|
| 208 |
else:
|
| 209 |
humanized_response = ""
|
| 210 |
-
|
| 211 |
if save:
|
| 212 |
save_conversation(query, ai_response, humanized_response, context_data)
|
| 213 |
-
|
| 214 |
return ai_response, humanized_response, load_history()
|
| 215 |
|
| 216 |
-
|
| 217 |
-
# Create Gradio UI
|
| 218 |
def create_gradio_app():
|
| 219 |
with gr.Blocks() as demo:
|
| 220 |
gr.Markdown("# MCP-Powered Chatbot with Nebius API & Text Humanization")
|
|
@@ -265,7 +209,6 @@ def create_gradio_app():
|
|
| 265 |
search_result = gr.Textbox(
|
| 266 |
label="Search Results", value="", lines=5, interactive=False
|
| 267 |
)
|
| 268 |
-
# Add event handlers for new features
|
| 269 |
submit_button.click(
|
| 270 |
fn=gradio_interface,
|
| 271 |
inputs=[query_input, context_input, humanize_checkbox, save_checkbox],
|
|
@@ -303,15 +246,14 @@ def create_gradio_app():
|
|
| 303 |
|
| 304 |
return demo
|
| 305 |
|
| 306 |
-
|
| 307 |
if __name__ == "__main__":
|
| 308 |
print("Starting Gradio Interface...")
|
| 309 |
try:
|
| 310 |
demo = create_gradio_app()
|
| 311 |
print("Gradio app created successfully")
|
| 312 |
demo.launch(
|
| 313 |
-
server_name="127.0.0.1",
|
| 314 |
-
server_port=7870,
|
| 315 |
share=False,
|
| 316 |
debug=True,
|
| 317 |
show_error=True,
|
|
@@ -319,5 +261,4 @@ if __name__ == "__main__":
|
|
| 319 |
except Exception as e:
|
| 320 |
print(f"Error launching Gradio app: {e}")
|
| 321 |
import traceback
|
| 322 |
-
|
| 323 |
-
traceback.print_exc()
|
|
|
|
| 3 |
import json
|
| 4 |
import datetime
|
| 5 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# Nebius API configuration (hardcoded)
|
| 8 |
+
NEBIUS_API_URL = "https://api.studio.nebius.ai/v1/chat/completions"
|
| 9 |
+
NEBIUS_API_KEY = "eyJhbGciOiJIUzI1NiIsImtpZCI6IlV6SXJWd1h0dnprLVRvdzlLZWstc0M1akptWXBvX1VaVkxUZlpnMDRlOFUiLCJ0eXAiOiJKV1QifQ.eyJzdWIiOiJnb29nbGUtb2F1dGgyfDExMDkwNDYwNzI2NjMxOTY2NDYyMSIsInNjb3BlIjoib3BlbmlkIG9mZmxpbmVfYWNjZXNzIiwiaXNzIjoiYXBpX2tleV9pc3N1ZXIiLCJhdWQiOlsiaHR0cHM6Ly9uZWJpdXMtaW5mZXJlbmNlLmV1LmF1dGgwLmNvbS9hcGkvdjIvIl0sImV4cCI6MTkwNjc4ODk3OSwidXVpZCI6IjBiMDc5OGI4LTdkZjctNDcxMi05ZTY0LTZiNmU5OTk0OWRmNyIsIm5hbWUiOiJNQ1AgU0VSVkVSIiwiZXhwaXJlc19hdCI6IjIwMzAtMDYtMDRUMDc6MzY6MTkrMDAwMCJ9.-RG1eCxfuO9bqmTa00pHCAb6L47IWEFHVxq3xqHrjU8"
|
| 10 |
|
| 11 |
# --- MCP Protocol Support ---
|
|
|
|
| 12 |
def mcp_supported_call(payload, endpoint, headers):
|
|
|
|
|
|
|
| 13 |
response = requests.post(endpoint, json=payload, headers=headers)
|
| 14 |
return response
|
| 15 |
|
|
|
|
|
|
|
| 16 |
def call_nebius_api(query, context_data=""):
|
| 17 |
try:
|
|
|
|
| 18 |
nebius_payload = {
|
| 19 |
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
| 20 |
"messages": [{"role": "user", "content": query}],
|
| 21 |
"max_tokens": 1000,
|
| 22 |
"temperature": 0.7,
|
| 23 |
}
|
|
|
|
|
|
|
| 24 |
headers = {
|
| 25 |
"Authorization": f"Bearer {NEBIUS_API_KEY}",
|
| 26 |
"Content-Type": "application/json",
|
| 27 |
}
|
| 28 |
response = mcp_supported_call(nebius_payload, NEBIUS_API_URL, headers)
|
|
|
|
| 29 |
if response.status_code != 200:
|
| 30 |
return f"Error: Nebius API request failed - {response.text}"
|
|
|
|
| 31 |
nebius_response = response.json()
|
| 32 |
result = (
|
| 33 |
nebius_response.get("choices", [{}])[0]
|
|
|
|
| 35 |
.get("content", "No response")
|
| 36 |
)
|
| 37 |
return result
|
|
|
|
| 38 |
except Exception as e:
|
| 39 |
return f"Error: {str(e)}"
|
| 40 |
|
|
|
|
|
|
|
| 41 |
def humanize_text(ai_response):
|
| 42 |
try:
|
| 43 |
humanize_prompt = f"""Please rewrite the following AI response to make it sound more natural, conversational, and human-like.
|
|
|
|
| 47 |
{ai_response}
|
| 48 |
|
| 49 |
Humanized version:"""
|
|
|
|
|
|
|
| 50 |
nebius_payload = {
|
| 51 |
+
"model": "deepseek-ai/DeepSeek-R1",
|
| 52 |
"messages": [{"role": "user", "content": humanize_prompt}],
|
| 53 |
"max_tokens": 1200,
|
| 54 |
+
"temperature": 0.9,
|
| 55 |
}
|
|
|
|
| 56 |
headers = {
|
| 57 |
"Authorization": f"Bearer {NEBIUS_API_KEY}",
|
| 58 |
"Content-Type": "application/json",
|
| 59 |
}
|
| 60 |
response = mcp_supported_call(nebius_payload, NEBIUS_API_URL, headers)
|
|
|
|
| 61 |
if response.status_code != 200:
|
| 62 |
+
return ai_response
|
|
|
|
| 63 |
nebius_response = response.json()
|
| 64 |
humanized_result = (
|
| 65 |
nebius_response.get("choices", [{}])[0]
|
| 66 |
.get("message", {})
|
| 67 |
.get("content", ai_response)
|
| 68 |
)
|
|
|
|
|
|
|
| 69 |
if "Humanized version:" in humanized_result:
|
| 70 |
+
humanized_result = humanized_result.split("Humanized version:", 1)[-1].strip()
|
|
|
|
|
|
|
|
|
|
| 71 |
lines = humanized_result.splitlines()
|
|
|
|
| 72 |
filtered_lines = [
|
| 73 |
line
|
| 74 |
for line in lines
|
|
|
|
| 89 |
)
|
| 90 |
)
|
| 91 |
]
|
|
|
|
| 92 |
cleaned = "\n".join(filtered_lines).strip()
|
|
|
|
| 93 |
return cleaned if cleaned else humanized_result
|
|
|
|
| 94 |
except Exception as e:
|
| 95 |
+
return ai_response
|
|
|
|
| 96 |
|
|
|
|
| 97 |
def save_conversation(query, ai_response, humanized_response, context_data):
|
|
|
|
| 98 |
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 99 |
with open("conversation_history.txt", "a", encoding="utf-8") as f:
|
| 100 |
f.write(
|
| 101 |
f"[{timestamp}]\nQuery: {query}\nContext: {context_data}\nAI Response: {ai_response}\nHumanized: {humanized_response}\n{'-' * 40}\n"
|
| 102 |
)
|
| 103 |
|
|
|
|
| 104 |
def clear_history():
|
|
|
|
| 105 |
open("conversation_history.txt", "w").close()
|
| 106 |
return "History cleared."
|
| 107 |
|
|
|
|
| 108 |
def load_history():
|
|
|
|
| 109 |
try:
|
| 110 |
with open("conversation_history.txt", "r", encoding="utf-8") as f:
|
| 111 |
return f.read()
|
| 112 |
except FileNotFoundError:
|
| 113 |
return "No history found."
|
| 114 |
|
|
|
|
|
|
|
| 115 |
def export_history_to_file(filename="conversation_export.txt"):
|
|
|
|
| 116 |
try:
|
| 117 |
with (
|
| 118 |
open("conversation_history.txt", "r", encoding="utf-8") as src,
|
|
|
|
| 123 |
except Exception as e:
|
| 124 |
return f"Export failed: {e}"
|
| 125 |
|
|
|
|
| 126 |
def search_history(keyword):
|
|
|
|
| 127 |
try:
|
| 128 |
with open("conversation_history.txt", "r", encoding="utf-8") as f:
|
| 129 |
lines = f.readlines()
|
|
|
|
| 132 |
except FileNotFoundError:
|
| 133 |
return "No history found."
|
| 134 |
|
|
|
|
| 135 |
def delete_last_conversation():
|
|
|
|
| 136 |
try:
|
| 137 |
with open("conversation_history.txt", "r", encoding="utf-8") as f:
|
| 138 |
content = f.read().strip().split("-" * 40)
|
| 139 |
if len(content) > 1:
|
| 140 |
+
content = content[:-1]
|
| 141 |
with open("conversation_history.txt", "w", encoding="utf-8") as f:
|
| 142 |
f.write(("-" * 40).join(content).strip())
|
| 143 |
return "Last conversation deleted."
|
|
|
|
| 147 |
except FileNotFoundError:
|
| 148 |
return "No history found."
|
| 149 |
|
|
|
|
|
|
|
| 150 |
def gradio_interface(query, context_data, humanize=False, save=False):
|
| 151 |
if not query.strip():
|
| 152 |
return "Please enter a query.", "", load_history()
|
|
|
|
|
|
|
| 153 |
ai_response = call_nebius_api(query, context_data)
|
|
|
|
|
|
|
| 154 |
if humanize and not ai_response.startswith("Error:"):
|
| 155 |
humanized_response = humanize_text(ai_response)
|
| 156 |
else:
|
| 157 |
humanized_response = ""
|
|
|
|
| 158 |
if save:
|
| 159 |
save_conversation(query, ai_response, humanized_response, context_data)
|
|
|
|
| 160 |
return ai_response, humanized_response, load_history()
|
| 161 |
|
|
|
|
|
|
|
| 162 |
def create_gradio_app():
|
| 163 |
with gr.Blocks() as demo:
|
| 164 |
gr.Markdown("# MCP-Powered Chatbot with Nebius API & Text Humanization")
|
|
|
|
| 209 |
search_result = gr.Textbox(
|
| 210 |
label="Search Results", value="", lines=5, interactive=False
|
| 211 |
)
|
|
|
|
| 212 |
submit_button.click(
|
| 213 |
fn=gradio_interface,
|
| 214 |
inputs=[query_input, context_input, humanize_checkbox, save_checkbox],
|
|
|
|
| 246 |
|
| 247 |
return demo
|
| 248 |
|
|
|
|
| 249 |
if __name__ == "__main__":
|
| 250 |
print("Starting Gradio Interface...")
|
| 251 |
try:
|
| 252 |
demo = create_gradio_app()
|
| 253 |
print("Gradio app created successfully")
|
| 254 |
demo.launch(
|
| 255 |
+
server_name="127.0.0.1",
|
| 256 |
+
server_port=7870,
|
| 257 |
share=False,
|
| 258 |
debug=True,
|
| 259 |
show_error=True,
|
|
|
|
| 261 |
except Exception as e:
|
| 262 |
print(f"Error launching Gradio app: {e}")
|
| 263 |
import traceback
|
| 264 |
+
traceback.print_exc()
|
|
|