Safetensors
English
File size: 12,044 Bytes
1384748
 
 
 
 
 
 
f30cf2a
791c0b3
92797ae
d6564d1
ed9118f
5f1bc48
92797ae
0aeb1b3
5f1bc48
 
 
92797ae
1384748
92797ae
0aeb1b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92797ae
 
 
5f1bc48
92797ae
5f1bc48
 
 
92797ae
 
5f1bc48
92797ae
5f1bc48
92797ae
5f1bc48
92797ae
5f1bc48
92797ae
5f1bc48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92797ae
 
5f1bc48
92797ae
5f1bc48
92797ae
5f1bc48
92797ae
5f1bc48
92797ae
5f1bc48
92797ae
 
5f1bc48
92797ae
5f1bc48
92797ae
5f1bc48
 
 
 
 
 
92797ae
 
5f1bc48
 
 
 
 
 
 
 
 
 
92797ae
 
d6564d1
 
92797ae
 
 
 
 
5f1bc48
92797ae
597d854
 
 
92797ae
5f1bc48
92797ae
597d854
5f1bc48
92797ae
5f1bc48
 
92797ae
5f1bc48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92797ae
5f1bc48
 
597d854
92797ae
5f1bc48
92797ae
597d854
5f1bc48
 
 
 
 
92797ae
5f1bc48
 
 
 
 
 
 
 
 
 
 
 
 
92797ae
597d854
 
30f4594
 
 
 
 
 
 
 
 
 
92797ae
5f1bc48
 
 
92797ae
5f1bc48
92797ae
5f1bc48
92797ae
5f1bc48
92797ae
d01367d
 
 
92797ae
 
5f1bc48
92797ae
5f1bc48
92797ae
5f1bc48
92797ae
5f1bc48
92797ae
acdbe2f
92797ae
 
5f1bc48
 
 
92797ae
5f1bc48
92797ae
5f1bc48
92797ae
5f1bc48
92797ae
5f1bc48
92797ae
5f1bc48
92797ae
 
5f1bc48
92797ae
5f1bc48
92797ae
 
5f1bc48
92797ae
5f1bc48
92797ae
 
5f1bc48
92797ae
30f4594
 
 
 
 
 
 
 
 
5f1bc48
30f4594
92797ae
 
5f1bc48
92797ae
5f1bc48
92797ae
 
 
 
5fd9bc5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
---
license: cc-by-nc-sa-4.0
datasets:
- AimonLabs/HDM-Bench
language:
- en
---

<img src="https://lh7-rt.googleusercontent.com/docsz/AD_4nXf_XGI0bexqeySNP6YA-yzUY-JRfNNM9A5p4DImWojxhzMUfyZvVu2hcY2XUZPXgPynBdNCR1xen0gzNbMugvFfK37VwSJ9iim5mARIPz1C-wyh3K7zUInxm2Mvy9rL7Zcb7T_3Mw?key=x9HqmDQsJmBeqyuiakDxe8Cs" alt="Aimon Labs Inc" style="background-color: white;" width="400"/>

<img src="https://huggingface.co/AimonLabs/hallucination-detection-model/" width="400" alt="HDM-2 Explainer"/>

# Model Card for Hallucination Detection Model (HDM-2-3B)

<!--
**Paper:** 
[![Read full-text on arXiv](https://img.shields.io/badge/arXiv-2504.07069-b31b1b.svg)](https://arxiv.org/abs/2504.07069)
*HalluciNot: Hallucination Detection Through Context and Common Knowledge Verification.*

**Notebook:** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1HclyB06t-wZVIxuK6AlyifRaf77vO5Yz?usp=sharing)

**GitHub Repository:** 
[![Repo](https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white
)](https://github.com/aimonlabs/hallucination-detection-model)

**HDM-Bench Dataset:**
[![Dataset on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md-dark.svg)](https\://huggingface.co/datasets/AimonLabs/HDM-Bench)

**HDM-2-3B Model:**
[![Model on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-md-dark.svg)](https://huggingface.co/AimonLabs/hallucination-detection-model)
-->

<table>
  <tr>
    <td><strong>Paper:</strong></td>
    <td><a href="https://arxiv.org/abs/2504.07069"><img src="https://img.shields.io/badge/arXiv-2504.07069-b31b1b.svg" alt="arXiv Badge" /></a> <em>HalluciNot: Hallucination Detection Through Context and Common Knowledge Verification.</em></td>
  </tr>
  <tr>
    <td><strong>Notebook:</strong></td>
    <td><a href="https://colab.research.google.com/drive/1HclyB06t-wZVIxuK6AlyifRaf77vO5Yz?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab Badge" /></a></td>
  </tr>
  <tr>
    <td><strong>GitHub Repository:</strong></td>
    <td><a href="https://github.com/aimonlabs/hallucination-detection-model"><img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white" alt="GitHub Badge" /></a></td>
  </tr>
  <tr>
    <td><strong>HDM-Bench Dataset:</strong></td>
    <td><a href="https://huggingface.co/datasets/AimonLabs/HDM-Bench"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md-dark.svg" alt="HF Dataset Badge" /></a></td>
  </tr>
  <tr>
    <td><strong>HDM-2-3B Model:</strong></td>
    <td><a href="https://huggingface.co/AimonLabs/hallucination-detection-model"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-md-dark.svg" alt="HF Model Badge" /></a></td>
  </tr>
</table>



## Introduction

Most judge models used in the industry today are not specialized for Hallucination evaluation tasks. 
Developers using them often struggle with score inconsistency, variance, high latencies, high costs, and prompt sensitivity. 
HDM-2 solves these challenges and at the same time, provides industry-first, state-of-the-art features.


## Highlights:

- Outperforms existing baselines on RagTruth, TruthfulQA, and our new HDM-Bench benchmark.

- **Context-based** hallucination evaluations based on user-provided or retrieved documents.

- **Common knowledge** contradictions based on widely-accepted common knowledge facts.

- **Phrase, token, and sentence-level** Hallucination identification with token-level probability **scores**

- Generalized model that works well across a variety of domains such as Finance, Healthcare, Legal, and Insurance.

- Operates within a **latency** budget of **500ms** on a single L4 GPU, especially beneficial for Agentic use cases.

## Model Overview:

HDM-2 is a modular, production-ready, multi-task hallucination (or inaccuracy) evaluation model designed to validate the factual groundedness of LLM outputs in enterprise environments, for both **contextual** and **common knowledge** evaluations. 
HDM-2 introduces a novel taxonomy-guided, span-level validation architecture focused on precision, explainability, and adaptability. 
The figure below shows the workflow (on the left) in which we determine whether a certain LLM response is hallucinated or not and an example (on the right) that shows the taxonomy of an LLM response.

HDM-2 Model Workflow | Example of Enterprise LLM Response Taxonomy
--- | ---
![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXdpn0qSjx_A3ax0qXZ3BIBTXAbMphuN1gLPXRQ4m_aTCSaN_hMMS27d0hJeQaZhc0P_iCpnktRsCyT_xB5V7-ofqQwjAvNWkRka_fJAGKfD466PK-jgGoRpDPqT9Ag3MT8XVSGscQ?key=x9HqmDQsJmBeqyuiakDxe8Cs) | ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXfJzyMnYVlR9sNIV7cDKmY3d_RnQYUBj7Ass6RWfhTt5ds2OJ5os2uPv7loECI_ao7_To3H4WV9UoHhnbJ2Ux-XSFQK76NJzOkiWNuDQQxuaojzgazujJ45KPSyhbtbfNe3msyl6w?key=x9HqmDQsJmBeqyuiakDxe8Cs)


### Enterprise Models

- The Enterprise version offers a way to incorporate “Enterprise knowledge” into Hallucination evaluations. This means knowledge that is specific to your company (or domain or industry) that might not be present in your context!!

- Another important feature covered in the Enterprise version are explanations. Please reach out to us for Enterprise licensing. 

- Other premium capabilities that will be included in the Enterprise version include improved accuracies, even lower latencies, and additional use cases such as Math and Code.

- Apart from Hallucinations, we have SOTA models for Prompt/Instruction adherence, RAG Relevance, Reranking (Promptable). The instruction adherence model is general-purpose and extremely low-latency. It performs well with a wide variety of instructions, including safety, style, and format constraints.


### Performance - Model Accuracy

See paper (linked on top) for more details.

|             |               |            |              |
| :---------: | :-----------: | :--------: | :----------: |
| **Dataset** | **Precision** | **Recall** | **F1 Score** |
|   HDMBENCH  |      0.87     |    0.84    |     0.855    |
|  TruthfulQA |      0.82     |    0.78    |     0.80     |
|   RagTruth  |      0.85     |    0.81    |     0.83     |


### Latency


|                         |                      |                        |                         |                     |
| ----------------------- | -------------------- | ---------------------- | ----------------------- | ------------------- |
| **Device**              | **Avg. Latency (s)** | **Median Latency (s)** | **95th Percentile (s)** | **Max Latency (s)** |
| Nvidia A100             | 0.204                | 0.201                  | 0.208                   | 1.32                |
| Nvidia L4 (recommended) | 0.207                | 0.203                  | 0.220                   | 1.29                |
| Nvidia T4               | 0.935                | 0.947                  | 1.487                   | 1.605               |
| CPU                     | 261.92               | 242.76                 | 350.76                  | 356.96              |


Join our Discord server for any questions around building reliable RAG, LLM, or Agentic Apps:
## AIMon GenAIR (https://discord.gg/yXZRnBAWzS)

## How to Get Started with the Model

Use the code below to get started with the model.

Install the Inference Code

```bash
pip install hdm2 --quiet
```

Run the HDM-2 model

```python
    # Load the model from HuggingFace into the GPU

    from hdm2 import HallucinationDetectionModel
    hdm_model = HallucinationDetectionModel()

    prompt = "Explain how the heart functions"
    context = """
    The heart is a muscular organ that pumps blood throughout the body.
    It has four chambers: two atria and two ventricles.
    """
    response = """The heart is a vital six-chambered organ that pumps blood throughout the human body.
    It contains three atria and three ventricles that work in harmony to circulate blood.
    The heart primarily runs on glucose for energy and typically beats at a rate of 20-30 beats per minute in adults.
    Located in the center-left of the chest, the heart is protected by the ribcage.
    The average human heart weighs about 5 pounds and will beat approximately 2 million times in a lifetime.
    """
    # Ground truth:
    # Hearts have 4 chambers (not 6), have 2 atria and 2 ventricles (not 3 each),
    # normal heart rate is 60-100 BPM (not 20-30),
    # average heart weighs ~10 oz (not 5 pounds),
    # and beats ~2.5 billion times (not 2 million) in a lifetime

    # Detect hallucinations with default parameters
    results = hdm_model.apply(prompt, context, response)
```

Print the results

```python
    # Utility function to help with printing the model output
    def print_results(results):
     #print(results)
     # Print results
     print(f"\nHallucination severity: {results['adjusted_hallucination_severity']:.4f}")

     # Print hallucinated sentences
     if results['candidate_sentences']:
         print("\nPotentially hallucinated sentences:")
         is_ck_hallucinated = False
         for sentence_result in results['ck_results']:
             if sentence_result['prediction'] == 1:  # 1 indicates hallucination
                 print(f"- {sentence_result['text']} (Probability: {sentence_result['hallucination_probability']:.4f})")
                 is_ck_hallucinated = True
         if not is_ck_hallucinated:
           print("No hallucinated sentences detected.")
     else:
         print("\nNo hallucinated sentences detected.")
    print_results(results)

```

```
OUTPUT:

    Hallucination severity: 0.9844

    Potentially hallucinated sentences:
    - The heart is a vital six-chambered organ that pumps blood throughout the human body. (Probability: 0.9102)
    - It contains three atria and three ventricles that work in harmony to circulate blood. (Probability: 1.0000)
    - The heart primarily runs on glucose for energy and typically beats at a rate of 20-30 beats per minute in adults. (Probability: 0.9844) 
```

### Model Description

- Model ID: HDM-2-3B

- Developed by: AIMon Labs, Inc.

- Language(s) (NLP): English

- License: CC BY-NC-SA 4.0

- License URL: <https://creativecommons.org/licenses/by-nc-sa/4.0/>

- Please reach out to us for enterprise and commercial licensing. Contact us at info@aimon.ai


### Model Sources

- Code repository: [GitHub](https://github.com/aimonlabs/hallucination-detection-model)

- Model weights: [HuggingFace](https://huggingface.co/AimonLabs/hallucination-detection-model/)

- Paper: [arXiv](https://arxiv.org/abs/2504.07069)

- Demo: [Google Colab](https://colab.research.google.com/drive/1HclyB06t-wZVIxuK6AlyifRaf77vO5Yz)


## Uses

### Direct Use

1. Automating Hallucination or Inaccuracy Evaluations

2. Assisting humans evaluating LLM responses for Hallucinations

3. Phrase, word or sentence-level identification of where Hallucinations lie

4. Selecting the best LLM with the least hallucinations for specific use cases

5. Automatic re-prompting for better LLM responses


## Limitations

- Annotations of "common knowledge" may still contain subjective judgments


## Technical Specifications 

See paper for [more details](https://arxiv.org/abs/2504.07069)


## Citation:

```
@misc{paudel2025hallucinothallucinationdetectioncontext,
      title={HalluciNot: Hallucination Detection Through Context and Common Knowledge Verification}, 
      author={Bibek Paudel and Alexander Lyzhov and Preetam Joshi and Puneet Anand},
      year={2025},
      eprint={2504.07069},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2504.07069}, 
}
```


## Model Card Authors

@bibekp, @alexlyzhov-aimon, @pjoshi30, @aimonp


## Model Card Contact

<info@aimon.ai>, @aimonp, @pjoshi30

## AIMon Website(https://www.aimon.ai)