Alijeff1214 lbourdois commited on
Commit
66e75e5
·
verified ·
1 Parent(s): 8b8a4c6

Improve language tag (#1)

Browse files

- Improve language tag (9f8dc333e1e8bb6e3f529d02740f9a0edbfe8aea)


Co-authored-by: Loïck BOURDOIS <lbourdois@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +262 -248
README.md CHANGED
@@ -1,249 +1,263 @@
1
- ---
2
- library_name: transformers
3
- tags:
4
- - unsloth
5
- - trl
6
- - grpo
7
- - LLM
8
- - BGB
9
- - German
10
- - transformers
11
- - AI
12
- - DeepLearning
13
- - ReinforcementLearning
14
- - MachineLearning
15
- license: apache-2.0
16
- base_model:
17
- - Qwen/Qwen2.5-3B
18
- - Qwen/Qwen2.5-VL-3B-Instruct
19
- pipeline_tag: question-answering
20
- ---
21
-
22
- # Model Card for Model ID
23
-
24
- <!-- Provide a quick summary of what the model is/does. -->
25
-
26
-
27
-
28
- ## Model Details
29
-
30
- ### Model Description
31
-
32
- <!-- Provide a longer summary of what this model is. -->
33
-
34
- DeutscheLexAI_BGB_2,0 is a fine-tuned Qwen2.5-3B model with more training and accurate version with output context length upto 500 tokens specializing in German legal text processing, trained on the Bürgerliches Gesetzbuch (BGB) dataset. It enhances legal text understanding, summarization, and reasoning for German legal documents.
35
-
36
- - **Developed by:** [Ali Asghar (jaffry258@gmail.com)]
37
- - **Funded by [optional]:** [still under progress ]
38
- - **Shared by [optional]:** []
39
- - **Model type:** [Large Language Model (LLM)]
40
- - **Language(s) (NLP):** [pytorch,transformers,python]
41
- - **License:** [Appache 2.0]
42
- - **Finetuned from model [optional]:** [Qwen2.5-3B]
43
-
44
- ### Model Sources [optional]
45
-
46
- <!-- Provide the basic links for the model. -->
47
-
48
- - **Repository:** https://huggingface.co/Alijeff1214/DeutscheLexAI_BGB_2.0/tree/main
49
- - **Paper [optional]:** [More Information Needed]
50
- - **Demo [optional]:** [More Information Needed]
51
-
52
- ## Uses
53
-
54
- DeutscheLexAI_BGB is a fine-tuned Qwen2.5-3B model specializing in German legal text processing, trained on the Bürgerliches Gesetzbuch (BGB) dataset. It enhances legal text understanding, summarization, and reasoning for German legal documents.
55
-
56
- ### Direct Use
57
-
58
- Legal research: Extract, summarize, and analyze BGB texts.
59
-
60
- AI-powered legal assistants: Provide insights into German law.
61
-
62
- Academic purposes: Assists in legal document structuring.
63
-
64
- [More Information Needed]
65
-
66
- ### Downstream Use [optional]
67
-
68
- Chatbots for legal guidance.
69
-
70
- AI-based contract analysis.
71
-
72
- [More Information Needed]
73
-
74
- ### Out-of-Scope Use
75
-
76
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
77
-
78
- [More Information Needed]
79
-
80
- ## Bias, Risks, and Limitations
81
-
82
- The model may reflect biases in the BGB dataset.
83
-
84
- Not suitable for real-time legal decision-making.
85
-
86
- Might struggle with non-German legal texts.
87
-
88
- [More Information Needed]
89
-
90
- ### Recommendations
91
-
92
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
93
-
94
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
95
-
96
- ## How to Get Started with the Model
97
-
98
- Use the code below to get started with the model.
99
-
100
- [More Information Needed]
101
-
102
- ## Training Details
103
-
104
- ### Training Data
105
-
106
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
107
-
108
- [More Information Needed]
109
-
110
- ### Training Procedure
111
-
112
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
113
-
114
- #### Preprocessing [optional]
115
-
116
- [More Information Needed]
117
-
118
-
119
- #### Training Hyperparameters
120
-
121
- - **Training regime:** [More Information Needed]
122
- - trainer = GRPOTrainer(
123
- model = model,
124
- processing_class = tokenizer,
125
- reward_funcs = [
126
- xmlcount_reward_func,
127
- soft_format_reward_func,
128
- strict_format_reward_func,
129
- int_reward_func,
130
- correctness_reward_func,
131
- ],
132
- args = training_args,
133
- train_dataset = dataset,
134
- )
135
- trainer.train()
136
-
137
- ### Test on HF Space
138
- https://huggingface.co/spaces/Alijeff1214/DeutecheLexAI_BGB
139
-
140
- #### Speeds, Sizes, Times [optional]
141
-
142
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
143
-
144
- [More Information Needed]
145
-
146
- ## Evaluation
147
-
148
- <!-- This section describes the evaluation protocols and provides the results. -->
149
-
150
- ### Testing Data, Factors & Metrics
151
-
152
- #### Testing Data
153
-
154
- <!-- This should link to a Dataset Card if possible. -->
155
-
156
- [More Information Needed]
157
-
158
- #### Factors
159
-
160
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
161
-
162
- [More Information Needed]
163
-
164
- #### Metrics
165
-
166
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
167
-
168
- [More Information Needed]
169
-
170
- ### Results
171
-
172
- [More Information Needed]
173
-
174
- #### Summary
175
-
176
-
177
-
178
- ## Model Examination [optional]
179
-
180
- <!-- Relevant interpretability work for the model goes here -->
181
-
182
- [More Information Needed]
183
-
184
- ## Environmental Impact
185
-
186
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
187
-
188
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
189
-
190
- - **Hardware Type:** [More Information Needed]
191
- - **Hours used:** [More Information Needed]
192
- - **Cloud Provider:** [More Information Needed]
193
- - **Compute Region:** [More Information Needed]
194
- - **Carbon Emitted:** [More Information Needed]
195
-
196
- ## Technical Specifications [optional]
197
-
198
- ### Model Architecture and Objective
199
-
200
- [More Information Needed]
201
-
202
- ### Compute Infrastructure
203
-
204
- [More Information Needed]
205
-
206
- #### Hardware
207
-
208
- [More Information Needed]
209
-
210
- #### Software
211
-
212
- [More Information Needed]
213
-
214
- ## Citation [optional]
215
-
216
- @article{DeutscheLexAI_BGB,
217
- title={DeutscheLexAI_BGB: A Fine-Tuned Qwen2.5-3B Model for German Legal Texts},
218
- author={Your Name or Organization},
219
- journal={Hugging Face Model Hub},
220
- year={2025},
221
- url={https://huggingface.co/Alijeff1214/DeutscheLexAI_BGB_2.0}
222
- }
223
-
224
-
225
- **BibTeX:**
226
-
227
- [More Information Needed]
228
-
229
- **APA:**
230
-
231
- [More Information Needed]
232
-
233
- ## Glossary [optional]
234
-
235
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
236
-
237
- [More Information Needed]
238
-
239
- ## More Information [optional]
240
-
241
- [More Information Needed]
242
-
243
- ## Model Card Authors [optional]
244
-
245
- Ali Asghar
246
-
247
- ## Model Card Contact
248
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249
  jaffry258@gmail.com
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - unsloth
5
+ - trl
6
+ - grpo
7
+ - LLM
8
+ - BGB
9
+ - German
10
+ - transformers
11
+ - AI
12
+ - DeepLearning
13
+ - ReinforcementLearning
14
+ - MachineLearning
15
+ license: apache-2.0
16
+ base_model:
17
+ - Qwen/Qwen2.5-3B
18
+ - Qwen/Qwen2.5-VL-3B-Instruct
19
+ pipeline_tag: question-answering
20
+ language:
21
+ - zho
22
+ - eng
23
+ - fra
24
+ - spa
25
+ - por
26
+ - deu
27
+ - ita
28
+ - rus
29
+ - jpn
30
+ - kor
31
+ - vie
32
+ - tha
33
+ - ara
34
+ ---
35
+
36
+ # Model Card for Model ID
37
+
38
+ <!-- Provide a quick summary of what the model is/does. -->
39
+
40
+
41
+
42
+ ## Model Details
43
+
44
+ ### Model Description
45
+
46
+ <!-- Provide a longer summary of what this model is. -->
47
+
48
+ DeutscheLexAI_BGB_2,0 is a fine-tuned Qwen2.5-3B model with more training and accurate version with output context length upto 500 tokens specializing in German legal text processing, trained on the Bürgerliches Gesetzbuch (BGB) dataset. It enhances legal text understanding, summarization, and reasoning for German legal documents.
49
+
50
+ - **Developed by:** [Ali Asghar (jaffry258@gmail.com)]
51
+ - **Funded by [optional]:** [still under progress ]
52
+ - **Shared by [optional]:** []
53
+ - **Model type:** [Large Language Model (LLM)]
54
+ - **Language(s) (NLP):** [pytorch,transformers,python]
55
+ - **License:** [Appache 2.0]
56
+ - **Finetuned from model [optional]:** [Qwen2.5-3B]
57
+
58
+ ### Model Sources [optional]
59
+
60
+ <!-- Provide the basic links for the model. -->
61
+
62
+ - **Repository:** https://huggingface.co/Alijeff1214/DeutscheLexAI_BGB_2.0/tree/main
63
+ - **Paper [optional]:** [More Information Needed]
64
+ - **Demo [optional]:** [More Information Needed]
65
+
66
+ ## Uses
67
+
68
+ DeutscheLexAI_BGB is a fine-tuned Qwen2.5-3B model specializing in German legal text processing, trained on the Bürgerliches Gesetzbuch (BGB) dataset. It enhances legal text understanding, summarization, and reasoning for German legal documents.
69
+
70
+ ### Direct Use
71
+
72
+ Legal research: Extract, summarize, and analyze BGB texts.
73
+
74
+ AI-powered legal assistants: Provide insights into German law.
75
+
76
+ Academic purposes: Assists in legal document structuring.
77
+
78
+ [More Information Needed]
79
+
80
+ ### Downstream Use [optional]
81
+
82
+ Chatbots for legal guidance.
83
+
84
+ AI-based contract analysis.
85
+
86
+ [More Information Needed]
87
+
88
+ ### Out-of-Scope Use
89
+
90
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
91
+
92
+ [More Information Needed]
93
+
94
+ ## Bias, Risks, and Limitations
95
+
96
+ The model may reflect biases in the BGB dataset.
97
+
98
+ Not suitable for real-time legal decision-making.
99
+
100
+ Might struggle with non-German legal texts.
101
+
102
+ [More Information Needed]
103
+
104
+ ### Recommendations
105
+
106
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
107
+
108
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
109
+
110
+ ## How to Get Started with the Model
111
+
112
+ Use the code below to get started with the model.
113
+
114
+ [More Information Needed]
115
+
116
+ ## Training Details
117
+
118
+ ### Training Data
119
+
120
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
121
+
122
+ [More Information Needed]
123
+
124
+ ### Training Procedure
125
+
126
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
127
+
128
+ #### Preprocessing [optional]
129
+
130
+ [More Information Needed]
131
+
132
+
133
+ #### Training Hyperparameters
134
+
135
+ - **Training regime:** [More Information Needed]
136
+ - trainer = GRPOTrainer(
137
+ model = model,
138
+ processing_class = tokenizer,
139
+ reward_funcs = [
140
+ xmlcount_reward_func,
141
+ soft_format_reward_func,
142
+ strict_format_reward_func,
143
+ int_reward_func,
144
+ correctness_reward_func,
145
+ ],
146
+ args = training_args,
147
+ train_dataset = dataset,
148
+ )
149
+ trainer.train()
150
+
151
+ ### Test on HF Space
152
+ https://huggingface.co/spaces/Alijeff1214/DeutecheLexAI_BGB
153
+
154
+ #### Speeds, Sizes, Times [optional]
155
+
156
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
157
+
158
+ [More Information Needed]
159
+
160
+ ## Evaluation
161
+
162
+ <!-- This section describes the evaluation protocols and provides the results. -->
163
+
164
+ ### Testing Data, Factors & Metrics
165
+
166
+ #### Testing Data
167
+
168
+ <!-- This should link to a Dataset Card if possible. -->
169
+
170
+ [More Information Needed]
171
+
172
+ #### Factors
173
+
174
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
175
+
176
+ [More Information Needed]
177
+
178
+ #### Metrics
179
+
180
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
181
+
182
+ [More Information Needed]
183
+
184
+ ### Results
185
+
186
+ [More Information Needed]
187
+
188
+ #### Summary
189
+
190
+
191
+
192
+ ## Model Examination [optional]
193
+
194
+ <!-- Relevant interpretability work for the model goes here -->
195
+
196
+ [More Information Needed]
197
+
198
+ ## Environmental Impact
199
+
200
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
201
+
202
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
203
+
204
+ - **Hardware Type:** [More Information Needed]
205
+ - **Hours used:** [More Information Needed]
206
+ - **Cloud Provider:** [More Information Needed]
207
+ - **Compute Region:** [More Information Needed]
208
+ - **Carbon Emitted:** [More Information Needed]
209
+
210
+ ## Technical Specifications [optional]
211
+
212
+ ### Model Architecture and Objective
213
+
214
+ [More Information Needed]
215
+
216
+ ### Compute Infrastructure
217
+
218
+ [More Information Needed]
219
+
220
+ #### Hardware
221
+
222
+ [More Information Needed]
223
+
224
+ #### Software
225
+
226
+ [More Information Needed]
227
+
228
+ ## Citation [optional]
229
+
230
+ @article{DeutscheLexAI_BGB,
231
+ title={DeutscheLexAI_BGB: A Fine-Tuned Qwen2.5-3B Model for German Legal Texts},
232
+ author={Your Name or Organization},
233
+ journal={Hugging Face Model Hub},
234
+ year={2025},
235
+ url={https://huggingface.co/Alijeff1214/DeutscheLexAI_BGB_2.0}
236
+ }
237
+
238
+
239
+ **BibTeX:**
240
+
241
+ [More Information Needed]
242
+
243
+ **APA:**
244
+
245
+ [More Information Needed]
246
+
247
+ ## Glossary [optional]
248
+
249
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
250
+
251
+ [More Information Needed]
252
+
253
+ ## More Information [optional]
254
+
255
+ [More Information Needed]
256
+
257
+ ## Model Card Authors [optional]
258
+
259
+ Ali Asghar
260
+
261
+ ## Model Card Contact
262
+
263
  jaffry258@gmail.com