Alijeff1214 commited on
Commit
df0de6b
·
verified ·
1 Parent(s): a0efa1a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +237 -3
README.md CHANGED
@@ -1,3 +1,237 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - unsloth
5
+ - trl
6
+ - grpo
7
+ license: apache-2.0
8
+ base_model:
9
+ - Qwen/Qwen2.5-3B
10
+ - Qwen/Qwen2.5-VL-3B-Instruct
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+ DeutscheLexAI_BGB is a fine-tuned Qwen2.5-3B model specializing in German legal text processing, trained on the Bürgerliches Gesetzbuch (BGB) dataset. It enhances legal text understanding, summarization, and reasoning for German legal documents.
26
+
27
+ - **Developed by:** [Ali Asghar (jaffry258@gmail.com)]
28
+ - **Funded by [optional]:** [still under progress ]
29
+ - **Shared by [optional]:** []
30
+ - **Model type:** [Large Language Model (LLM)]
31
+ - **Language(s) (NLP):** [pytorch,transformers,python]
32
+ - **License:** [Appache 2.0]
33
+ - **Finetuned from model [optional]:** [Qwen2.5-3B]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [https://huggingface.co/Alijeff1214/DeutscheLexAI_BGB/tree/main]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ DeutscheLexAI_BGB is a fine-tuned Qwen2.5-3B model specializing in German legal text processing, trained on the Bürgerliches Gesetzbuch (BGB) dataset. It enhances legal text understanding, summarization, and reasoning for German legal documents.
46
+
47
+ ### Direct Use
48
+
49
+ Legal research: Extract, summarize, and analyze BGB texts.
50
+
51
+ AI-powered legal assistants: Provide insights into German law.
52
+
53
+ Academic purposes: Assists in legal document structuring.
54
+
55
+ [More Information Needed]
56
+
57
+ ### Downstream Use [optional]
58
+
59
+ Chatbots for legal guidance.
60
+
61
+ AI-based contract analysis.
62
+
63
+ [More Information Needed]
64
+
65
+ ### Out-of-Scope Use
66
+
67
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ## Bias, Risks, and Limitations
72
+
73
+ The model may reflect biases in the BGB dataset.
74
+
75
+ Not suitable for real-time legal decision-making.
76
+
77
+ Might struggle with non-German legal texts.
78
+
79
+ [More Information Needed]
80
+
81
+ ### Recommendations
82
+
83
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
84
+
85
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
86
+
87
+ ## How to Get Started with the Model
88
+
89
+ Use the code below to get started with the model.
90
+
91
+ [More Information Needed]
92
+
93
+ ## Training Details
94
+
95
+ ### Training Data
96
+
97
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
98
+
99
+ [More Information Needed]
100
+
101
+ ### Training Procedure
102
+
103
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
104
+
105
+ #### Preprocessing [optional]
106
+
107
+ [More Information Needed]
108
+
109
+
110
+ #### Training Hyperparameters
111
+
112
+ - **Training regime:** [More Information Needed]
113
+ - trainer = GRPOTrainer(
114
+ model = model,
115
+ processing_class = tokenizer,
116
+ reward_funcs = [
117
+ xmlcount_reward_func,
118
+ soft_format_reward_func,
119
+ strict_format_reward_func,
120
+ int_reward_func,
121
+ correctness_reward_func,
122
+ ],
123
+ args = training_args,
124
+ train_dataset = dataset,
125
+ )
126
+ trainer.train()
127
+
128
+ #### Speeds, Sizes, Times [optional]
129
+
130
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ## Evaluation
135
+
136
+ <!-- This section describes the evaluation protocols and provides the results. -->
137
+
138
+ ### Testing Data, Factors & Metrics
139
+
140
+ #### Testing Data
141
+
142
+ <!-- This should link to a Dataset Card if possible. -->
143
+
144
+ [More Information Needed]
145
+
146
+ #### Factors
147
+
148
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
149
+
150
+ [More Information Needed]
151
+
152
+ #### Metrics
153
+
154
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
155
+
156
+ [More Information Needed]
157
+
158
+ ### Results
159
+
160
+ [More Information Needed]
161
+
162
+ #### Summary
163
+
164
+
165
+
166
+ ## Model Examination [optional]
167
+
168
+ <!-- Relevant interpretability work for the model goes here -->
169
+
170
+ [More Information Needed]
171
+
172
+ ## Environmental Impact
173
+
174
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
175
+
176
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
177
+
178
+ - **Hardware Type:** [More Information Needed]
179
+ - **Hours used:** [More Information Needed]
180
+ - **Cloud Provider:** [More Information Needed]
181
+ - **Compute Region:** [More Information Needed]
182
+ - **Carbon Emitted:** [More Information Needed]
183
+
184
+ ## Technical Specifications [optional]
185
+
186
+ ### Model Architecture and Objective
187
+
188
+ [More Information Needed]
189
+
190
+ ### Compute Infrastructure
191
+
192
+ [More Information Needed]
193
+
194
+ #### Hardware
195
+
196
+ [More Information Needed]
197
+
198
+ #### Software
199
+
200
+ [More Information Needed]
201
+
202
+ ## Citation [optional]
203
+
204
+ @article{DeutscheLexAI_BGB,
205
+ title={DeutscheLexAI_BGB: A Fine-Tuned Qwen2.5-3B Model for German Legal Texts},
206
+ author={Your Name or Organization},
207
+ journal={Hugging Face Model Hub},
208
+ year={2025},
209
+ url={https://huggingface.co/Alijeff1214/DeutscheLexAI_BGB}
210
+ }
211
+
212
+
213
+ **BibTeX:**
214
+
215
+ [More Information Needed]
216
+
217
+ **APA:**
218
+
219
+ [More Information Needed]
220
+
221
+ ## Glossary [optional]
222
+
223
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
224
+
225
+ [More Information Needed]
226
+
227
+ ## More Information [optional]
228
+
229
+ [More Information Needed]
230
+
231
+ ## Model Card Authors [optional]
232
+
233
+ [More Information Needed]
234
+
235
+ ## Model Card Contact
236
+
237
+ [More Information Needed]