--- tags: - FrozenLake-v1-8x8 - q-learning - reinforcement-learning - custom-implementation - SL-Sprout model-index: - name: q-FrozenLake-v1-8x8 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8 type: FrozenLake-v1-8x8 metrics: - type: mean_reward value: 0.69 +/- 0.46 name: mean_reward verified: false --- # sl_Sprout **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1**. ## Usage ```python model = load_from_hub(repo_id="AllIllusion/q-FrozenLake-v1-8x8", filename="sl_TabularModel_FrozenLake-v1.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["FrozenLake-v1"]) ```