--- library_name: peft base_model: NousResearch/CodeLlama-7b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: 83c0f599-dd89-4ae1-84b6-b5fe4a0bace8 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-7b-hf-flash bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bb63f2845e2675bc_train_data.json ds_type: json format: custom path: /workspace/input_data/bb63f2845e2675bc_train_data.json type: field_input: sub_topic field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 400 eval_table_size: null flash_attention: false gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/83c0f599-dd89-4ae1-84b6-b5fe4a0bace8 hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj - down_proj - up_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 3684 micro_batch_size: 2 mlflow_experiment_name: /tmp/bb63f2845e2675bc_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 400 sequence_len: 2048 special_tokens: pad_token: strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.04 wandb_entity: null wandb_mode: online wandb_name: 709a6d28-9f8a-4848-8614-7ea87b70604a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 709a6d28-9f8a-4848-8614-7ea87b70604a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 83c0f599-dd89-4ae1-84b6-b5fe4a0bace8 This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-7b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 3684 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6698 | 0.0002 | 1 | 0.6571 | | 1.3487 | 0.0678 | 400 | 0.4049 | | 1.0191 | 0.1355 | 800 | 0.3768 | | 1.5641 | 0.2033 | 1200 | 0.3599 | | 1.3864 | 0.2710 | 1600 | 0.3462 | | 1.3802 | 0.3388 | 2000 | 0.3342 | | 1.5108 | 0.4065 | 2400 | 0.3258 | | 0.9273 | 0.4743 | 2800 | 0.3197 | | 1.1166 | 0.5420 | 3200 | 0.3166 | | 0.7929 | 0.6098 | 3600 | 0.3157 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1