--- library_name: peft license: mit base_model: fxmarty/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: c8d47522-2e04-42a0-93ed-59f3e5699aa8 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-dummy-qwen2 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bce164773e1650b3_train_data.json ds_type: json format: custom path: /workspace/input_data/bce164773e1650b3_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/c8d47522-2e04-42a0-93ed-59f3e5699aa8 hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 27590 micro_batch_size: 4 mlflow_experiment_name: /tmp/bce164773e1650b3_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.044897409419476494 wandb_entity: null wandb_mode: online wandb_name: 68810631-1dc7-4768-b968-076e11ca27ee wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 68810631-1dc7-4768-b968-076e11ca27ee warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# c8d47522-2e04-42a0-93ed-59f3e5699aa8 This model is a fine-tuned version of [fxmarty/tiny-dummy-qwen2](https://huggingface.co/fxmarty/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9078 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 6648 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.9323 | 0.0003 | 1 | 11.9318 | | 11.9185 | 0.0301 | 100 | 11.9185 | | 11.9162 | 0.0602 | 200 | 11.9145 | | 11.9141 | 0.0903 | 300 | 11.9125 | | 11.912 | 0.1203 | 400 | 11.9115 | | 11.9113 | 0.1504 | 500 | 11.9110 | | 11.9139 | 0.1805 | 600 | 11.9106 | | 11.9124 | 0.2106 | 700 | 11.9103 | | 11.9113 | 0.2407 | 800 | 11.9100 | | 11.9132 | 0.2708 | 900 | 11.9098 | | 11.912 | 0.3008 | 1000 | 11.9096 | | 11.9128 | 0.3309 | 1100 | 11.9094 | | 11.9124 | 0.3610 | 1200 | 11.9091 | | 11.9111 | 0.3911 | 1300 | 11.9091 | | 11.9124 | 0.4212 | 1400 | 11.9090 | | 11.9113 | 0.4513 | 1500 | 11.9090 | | 11.91 | 0.4813 | 1600 | 11.9087 | | 11.9134 | 0.5114 | 1700 | 11.9086 | | 11.91 | 0.5415 | 1800 | 11.9087 | | 11.9115 | 0.5716 | 1900 | 11.9085 | | 11.9112 | 0.6017 | 2000 | 11.9084 | | 11.9103 | 0.6318 | 2100 | 11.9084 | | 11.9095 | 0.6619 | 2200 | 11.9084 | | 11.9113 | 0.6919 | 2300 | 11.9082 | | 11.9129 | 0.7220 | 2400 | 11.9082 | | 11.9107 | 0.7521 | 2500 | 11.9081 | | 11.9145 | 0.7822 | 2600 | 11.9081 | | 11.9089 | 0.8123 | 2700 | 11.9081 | | 11.9105 | 0.8424 | 2800 | 11.9080 | | 11.9093 | 0.8724 | 2900 | 11.9079 | | 11.9079 | 0.9025 | 3000 | 11.9078 | | 11.9111 | 0.9326 | 3100 | 11.9077 | | 11.9104 | 0.9627 | 3200 | 11.9078 | | 11.9129 | 0.9928 | 3300 | 11.9078 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1