File size: 7,186 Bytes
c7751d8
 
 
 
 
 
0180025
f2846f1
 
 
 
 
3b34ee1
 
7a77574
280c9ff
b71ae4d
c1f00e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9778365
c1f00e7
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
---
license: apache-2.0
datasets:
- Aquiles-ai/Athenea-VL
base_model:
- huihui-ai/Huihui-Qwen3-VL-4B-Thinking-abliterated
pipeline_tag: image-text-to-text
tags:
- code
- math
- uncensored
- merge
---

<h1 align="center">Athenea-4B-VL-Thinking</h1>

![image](athenea_vl.png)

**Athenea-4B-VL-Thinking** is a fine-tuned version of [huihui-ai/Huihui-Qwen3-VL-4B-Thinking-abliterated](https://huggingface.co/huihui-ai/Huihui-Qwen3-VL-4B-Thinking-abliterated), specialized in **multimodal reasoning, scientific problem-solving, and visual analysis**.

Trained with high-quality data that combines visual content with explicit reasoning traces using `<think>` and `</think>` tags, the model is designed to perform detailed step-by-step reasoning on vision-language tasks, complex scientific problems, competitive programming, geometry, and diagram analysis.

> ⚠️ **Important Note:** This model uses an *abliterated (uncensored)* base version, providing total expressive freedom and unrestricted output generation. Users are fully responsible for any use or content produced by the model. It is intended exclusively for research and experimentation purposes.

## 🎯 Model Description

Athenea-4B-VL-Thinking extends the structured reasoning capabilities of Huihui-Qwen3-VL toward scientific and multimodal domains, showing outstanding performance in logical problem-solving, visual analysis, and understanding complex diagrams.

Key features:

* **Step-by-step visual reasoning** within `<think>` blocks
* **Specialization in scientific and analytical tasks** (Chemistry, Physics, Geometry, Graph Algorithms)
* **Uncensored output generation** for complete reasoning visibility
* **Enhanced logical consistency** through focused fine-tuning
* **Compatible with open inference frameworks** (Transformers, vLLM, etc.)

The model was fine-tuned using the [Aquiles-ai/Athenea-VL](https://huggingface.co/datasets/Aquiles-ai/Athenea-VL) dataset, which includes 20,913 high-quality examples with diverse visual content, structured reasoning chains, and natural language explanations across multiple scientific domains.

> Note: Fine-tuning was performed using **Kronos**, Aquiles-ai's proprietary enterprise fine-tuning system.

## 💻 Usage

### Installation

```bash
uv pip install transformers torch accelerate qwen-vl-utils
```

### Basic Inference

```python
from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
import torch

model_id = "Aquiles-ai/Athenea-4B-VL-Thinking"

model = Qwen3VLForConditionalGeneration.from_pretrained(
    model_id,
    attn_implementation="flash_attention_2",  # Requires flash-attn
    device_map="auto",
    trust_remote_code=True,
    dtype=torch.bfloat16,
)

# Without flash-attn:
# model = Qwen3VLForConditionalGeneration.from_pretrained(
#     model_id,
#     device_map="auto",
#     trust_remote_code=True,
#     dtype="auto",
# )

processor = AutoProcessor.from_pretrained(model_id)

image_path = "multimodal_problem.jpg"

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image", "image": f"{image_path}",
            },
            {"type": "text", "text": "A mass $m_1$ of 9.1 kg is positioned on a frictionless plane inclined at an angle of $50°$. It is tethered by a rope that passes over a frictionless pulley to a second, hanging mass $m_2$ of 7.8 kg, as depicted in the diagram below. Your task is to calculate the acceleration of this two-mass system and the tension within the connecting rope."},
        ],
    }
]

# Preparation for inference
inputs = processor.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=True,
    return_dict=True,
    return_tensors="pt"
).to(model.device)

# Inference: Output generation
generated_ids = model.generate(**inputs, max_new_tokens=40960)
generated_ids_trimmed = [
    out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```

### Production Deployment with vLLM

**Start server:**

```bash
vllm serve Aquiles-ai/Athenea-4B-VL-Thinking \
  --host 0.0.0.0 \
  --port 8000 \
  --api-key dummyapikey \
  --mm-encoder-tp-mode data \
  --limit-mm-per-prompt '{"image":2,"video":0}' \
  --chat-template chat_template.jinja \
  --max-model-len=16384 \
  --gpu-memory-utilization=0.90 \
  --reasoning-parser qwen3
```

**Request to server from OpenAI client:**

```python
from openai import OpenAI
import base64

client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key="dummyapikey")

def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")

image_base64 = encode_image("multimodal_problem.jpg")

response = client.chat.completions.create(
    model="Aquiles-ai/Athenea-4B-VL-Thinking",
    messages=[
        {"role": "system", "content": "IMPORTANT: Always wrap your thinking process between <think> and </think> tags."},
        {"role": "user",
        "content": [
            {"type": "text", "text": "What's in this image?"},
            {
                "type": "image_url",
                "image_url": {
                    "url": f"data:image/jpeg;base64,{image_base64}",
                },
            },
        ],
    }],
    max_tokens=2048,
    extra_body={
        "add_generation_prompt": True,
        "enable_thinking": True,
    },
    stream=True
)

for chunk in response:
    if chunk.choices[0].delta.content:
        print(chunk.choices[0].delta.content, end="", flush=True)
```

**vLLM Benefits:** 20-30x faster inference, OpenAI-compatible API, continuous batching, asynchronous scheduling, support for multiple images.

## 🔬 Model Capabilities

Athenea-4B-VL-Thinking excels at:

- **Scientific reasoning**: Physics, chemistry, and mathematics problems with diagrams
- **Competitive programming**: Analysis of visual data structures and algorithms
- **Advanced geometry**: Interpretation of complex geometric figures
- **Graph algorithms**: Understanding and analysis of graph representations
- **General multimodal analysis**: Combining visual and textual information

## 📊 Training Dataset

The model was trained on the [Aquiles-ai/Athenea-VL](https://huggingface.co/datasets/Aquiles-ai/Athenea-VL) dataset, which contains:

- **20,913 high-quality examples** with structured reasoning traces
- **Diverse scientific domains**: Chemistry, Physics, Competitive Programming, Geometry, Graph Algorithms
- **Chain-of-Thought reasoning**: All examples include explicit thought processes in `<think>` tags
- **Balanced distribution**: Randomly mixed data to prevent training biases

## Contact

- **More about [Aquiles-ai](https://aquiles-ai.vercel.app).**

- **Aquiles-ai on [GitHub](https://github.com/Aquiles-ai).**

- **Our collections on [HuggingFace](https://huggingface.co/Aquiles-ai/collections).**

### Aquiles-playground

Work is still underway to make it compatible with Aquiles-playground

<p align="center">
  Made with ❤️ by <a href="https://github.com/Aquiles-ai">Aquiles-ai</a>
</p>