delete checkpoint
Browse files- checkpoint/added_tokens.json +0 -28
- checkpoint/config.json +0 -30
- checkpoint/generation_config.json +0 -13
- checkpoint/global_step/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +0 -3
- checkpoint/global_step/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +0 -3
- checkpoint/global_step/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +0 -3
- checkpoint/global_step/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +0 -3
- checkpoint/global_step/zero_pp_rank_0_mp_rank_00_model_states.pt +0 -3
- checkpoint/global_step/zero_pp_rank_1_mp_rank_00_model_states.pt +0 -3
- checkpoint/global_step/zero_pp_rank_2_mp_rank_00_model_states.pt +0 -3
- checkpoint/global_step/zero_pp_rank_3_mp_rank_00_model_states.pt +0 -3
- checkpoint/latest +0 -1
- checkpoint/merges.txt +0 -0
- checkpoint/model-00001-of-00004.safetensors +0 -3
- checkpoint/model-00002-of-00004.safetensors +0 -3
- checkpoint/model-00003-of-00004.safetensors +0 -3
- checkpoint/model-00004-of-00004.safetensors +0 -3
- checkpoint/model.safetensors.index.json +0 -406
- checkpoint/rng_state_0.pth +0 -3
- checkpoint/rng_state_1.pth +0 -3
- checkpoint/rng_state_2.pth +0 -3
- checkpoint/rng_state_3.pth +0 -3
- checkpoint/special_tokens_map.json +0 -31
- checkpoint/tokenizer.json +0 -3
- checkpoint/tokenizer_config.json +0 -245
- checkpoint/trainer_state.json +0 -664
- checkpoint/training_args.bin +0 -3
- checkpoint/vocab.json +0 -0
- checkpoint/zero_to_fp32.py +0 -674
checkpoint/added_tokens.json
DELETED
|
@@ -1,28 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"</think>": 151668,
|
| 3 |
-
"</tool_call>": 151658,
|
| 4 |
-
"</tool_response>": 151666,
|
| 5 |
-
"<think>": 151667,
|
| 6 |
-
"<tool_call>": 151657,
|
| 7 |
-
"<tool_response>": 151665,
|
| 8 |
-
"<|box_end|>": 151649,
|
| 9 |
-
"<|box_start|>": 151648,
|
| 10 |
-
"<|endoftext|>": 151643,
|
| 11 |
-
"<|file_sep|>": 151664,
|
| 12 |
-
"<|fim_middle|>": 151660,
|
| 13 |
-
"<|fim_pad|>": 151662,
|
| 14 |
-
"<|fim_prefix|>": 151659,
|
| 15 |
-
"<|fim_suffix|>": 151661,
|
| 16 |
-
"<|im_end|>": 151645,
|
| 17 |
-
"<|im_start|>": 151644,
|
| 18 |
-
"<|image_pad|>": 151655,
|
| 19 |
-
"<|object_ref_end|>": 151647,
|
| 20 |
-
"<|object_ref_start|>": 151646,
|
| 21 |
-
"<|quad_end|>": 151651,
|
| 22 |
-
"<|quad_start|>": 151650,
|
| 23 |
-
"<|repo_name|>": 151663,
|
| 24 |
-
"<|video_pad|>": 151656,
|
| 25 |
-
"<|vision_end|>": 151653,
|
| 26 |
-
"<|vision_pad|>": 151654,
|
| 27 |
-
"<|vision_start|>": 151652
|
| 28 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/config.json
DELETED
|
@@ -1,30 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"architectures": [
|
| 3 |
-
"Qwen3ForCausalLM"
|
| 4 |
-
],
|
| 5 |
-
"attention_bias": false,
|
| 6 |
-
"attention_dropout": 0.0,
|
| 7 |
-
"bos_token_id": 151643,
|
| 8 |
-
"eos_token_id": 151645,
|
| 9 |
-
"head_dim": 128,
|
| 10 |
-
"hidden_act": "silu",
|
| 11 |
-
"hidden_size": 4096,
|
| 12 |
-
"initializer_range": 0.02,
|
| 13 |
-
"intermediate_size": 12288,
|
| 14 |
-
"max_position_embeddings": 40960,
|
| 15 |
-
"max_window_layers": 36,
|
| 16 |
-
"model_type": "qwen3",
|
| 17 |
-
"num_attention_heads": 32,
|
| 18 |
-
"num_hidden_layers": 36,
|
| 19 |
-
"num_key_value_heads": 8,
|
| 20 |
-
"rms_norm_eps": 1e-06,
|
| 21 |
-
"rope_scaling": null,
|
| 22 |
-
"rope_theta": 1000000,
|
| 23 |
-
"sliding_window": null,
|
| 24 |
-
"tie_word_embeddings": false,
|
| 25 |
-
"torch_dtype": "bfloat16",
|
| 26 |
-
"transformers_version": "4.51.1",
|
| 27 |
-
"use_cache": false,
|
| 28 |
-
"use_sliding_window": false,
|
| 29 |
-
"vocab_size": 151936
|
| 30 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/generation_config.json
DELETED
|
@@ -1,13 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"bos_token_id": 151643,
|
| 3 |
-
"do_sample": true,
|
| 4 |
-
"eos_token_id": [
|
| 5 |
-
151645,
|
| 6 |
-
151643
|
| 7 |
-
],
|
| 8 |
-
"pad_token_id": 151643,
|
| 9 |
-
"temperature": 0.6,
|
| 10 |
-
"top_k": 20,
|
| 11 |
-
"top_p": 0.95,
|
| 12 |
-
"transformers_version": "4.51.1"
|
| 13 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/global_step/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:f5f4f4b79ff32506ab32906080af95d79b9ef1967e42bf55fac6194cb1c74dd0
|
| 3 |
-
size 136
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/global_step/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:734f86a747fe8100233d07aadf7aa0e2f5475d018c939c2fb35932a55399da80
|
| 3 |
-
size 136
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/global_step/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:d69239f0d6cbccf4515dadc6023e2c1d708e803b4f676645f239b4f401d76fae
|
| 3 |
-
size 136
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/global_step/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:10be5af584d25f6ecb8ece3884cb34cee90cb7c11a2bde2d32a0119bea301d9e
|
| 3 |
-
size 136
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/global_step/zero_pp_rank_0_mp_rank_00_model_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:12c2be50cb7ab0c660dc53a2180d2036facdee649f7cc657e70a1f5f3b3b49af
|
| 3 |
-
size 131
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/global_step/zero_pp_rank_1_mp_rank_00_model_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:d6406fa226ac5e40e48d8dcb70712e62c2dba1220aa100b5e9dd31301ac548b8
|
| 3 |
-
size 131
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/global_step/zero_pp_rank_2_mp_rank_00_model_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:4747bd7a8e882aed290e815eef6be5113537e8b99284aaf61ffe24b55402a55b
|
| 3 |
-
size 131
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/global_step/zero_pp_rank_3_mp_rank_00_model_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:e0ebc844de0e4adc15fe26d906efb231737f5460eb4467028e6e495a92a725a2
|
| 3 |
-
size 131
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/latest
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
global_step30
|
|
|
|
|
|
checkpoint/merges.txt
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint/model-00001-of-00004.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:f7c902e5249e8cffa657fca39c1f1235ae0e40cfbdf54fa21b496350ac7e3e1c
|
| 3 |
-
size 135
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/model-00002-of-00004.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:73cec5175b48a2873e56ddd88addafe391d27c09f37ca000b9b1426c524c3e5e
|
| 3 |
-
size 135
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/model-00003-of-00004.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:5b7f159391827175ff75e3f87597befd1cc41fb8f698e9a73396025fedb2454c
|
| 3 |
-
size 135
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/model-00004-of-00004.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:324a90d05ec6403957185cd43f83bdd8731ffab4e34c5a47799f7b22403c019e
|
| 3 |
-
size 135
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/model.safetensors.index.json
DELETED
|
@@ -1,406 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"metadata": {
|
| 3 |
-
"total_size": 16381470720
|
| 4 |
-
},
|
| 5 |
-
"weight_map": {
|
| 6 |
-
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 7 |
-
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 8 |
-
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 9 |
-
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 10 |
-
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
-
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
-
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 13 |
-
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 14 |
-
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
-
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
-
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 17 |
-
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
-
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 19 |
-
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 20 |
-
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 21 |
-
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 22 |
-
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
-
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 24 |
-
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 25 |
-
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 26 |
-
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 27 |
-
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 28 |
-
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 29 |
-
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 30 |
-
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 31 |
-
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 32 |
-
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 33 |
-
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
-
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 35 |
-
"model.layers.10.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 36 |
-
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 37 |
-
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 38 |
-
"model.layers.10.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 39 |
-
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
-
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 41 |
-
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 42 |
-
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 43 |
-
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
-
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 45 |
-
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 46 |
-
"model.layers.11.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 47 |
-
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
-
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 49 |
-
"model.layers.11.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 50 |
-
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
-
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
-
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 53 |
-
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 54 |
-
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 55 |
-
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
-
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 57 |
-
"model.layers.12.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 58 |
-
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
-
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
-
"model.layers.12.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 61 |
-
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 62 |
-
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
-
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 64 |
-
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 65 |
-
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
-
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 67 |
-
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 68 |
-
"model.layers.13.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 69 |
-
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
-
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
-
"model.layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 72 |
-
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 73 |
-
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 74 |
-
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 75 |
-
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
-
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 77 |
-
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
-
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 79 |
-
"model.layers.14.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 80 |
-
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 81 |
-
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
-
"model.layers.14.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 83 |
-
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
-
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 85 |
-
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 86 |
-
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
-
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
-
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 89 |
-
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 90 |
-
"model.layers.15.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 91 |
-
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
-
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 93 |
-
"model.layers.15.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 94 |
-
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
-
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
-
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 97 |
-
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 98 |
-
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 99 |
-
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
-
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 101 |
-
"model.layers.16.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 102 |
-
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 103 |
-
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
-
"model.layers.16.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 105 |
-
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 106 |
-
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 107 |
-
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 108 |
-
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 109 |
-
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 110 |
-
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 111 |
-
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 112 |
-
"model.layers.17.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 113 |
-
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 114 |
-
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 115 |
-
"model.layers.17.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 116 |
-
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 117 |
-
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 118 |
-
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 119 |
-
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 120 |
-
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 121 |
-
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 122 |
-
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 123 |
-
"model.layers.18.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 124 |
-
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 125 |
-
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 126 |
-
"model.layers.18.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 127 |
-
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 128 |
-
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 129 |
-
"model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 130 |
-
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 131 |
-
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 132 |
-
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 133 |
-
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 134 |
-
"model.layers.19.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 135 |
-
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 136 |
-
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 137 |
-
"model.layers.19.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 138 |
-
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 139 |
-
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 140 |
-
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 141 |
-
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 142 |
-
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 143 |
-
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 144 |
-
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 145 |
-
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 146 |
-
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 147 |
-
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 148 |
-
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 149 |
-
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 150 |
-
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 151 |
-
"model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 152 |
-
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 153 |
-
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 154 |
-
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 155 |
-
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 156 |
-
"model.layers.20.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 157 |
-
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 158 |
-
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 159 |
-
"model.layers.20.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 160 |
-
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 161 |
-
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 162 |
-
"model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 163 |
-
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 164 |
-
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 165 |
-
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 166 |
-
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 167 |
-
"model.layers.21.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 168 |
-
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 169 |
-
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 170 |
-
"model.layers.21.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 171 |
-
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 172 |
-
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 173 |
-
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 174 |
-
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 175 |
-
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
-
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 177 |
-
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 178 |
-
"model.layers.22.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 179 |
-
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 180 |
-
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 181 |
-
"model.layers.22.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 182 |
-
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 183 |
-
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 184 |
-
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 185 |
-
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
-
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 187 |
-
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
-
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 189 |
-
"model.layers.23.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 190 |
-
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
-
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
-
"model.layers.23.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 193 |
-
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 194 |
-
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
-
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 196 |
-
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 197 |
-
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 198 |
-
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 199 |
-
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 200 |
-
"model.layers.24.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 201 |
-
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 202 |
-
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
-
"model.layers.24.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 204 |
-
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 205 |
-
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 206 |
-
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 207 |
-
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
-
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 209 |
-
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 210 |
-
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 211 |
-
"model.layers.25.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 212 |
-
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 213 |
-
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
-
"model.layers.25.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 215 |
-
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 216 |
-
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 217 |
-
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 218 |
-
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 219 |
-
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 220 |
-
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 221 |
-
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 222 |
-
"model.layers.26.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 223 |
-
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 224 |
-
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 225 |
-
"model.layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 226 |
-
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 227 |
-
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 228 |
-
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 229 |
-
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 230 |
-
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
-
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
-
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 233 |
-
"model.layers.27.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 234 |
-
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 235 |
-
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 236 |
-
"model.layers.27.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 237 |
-
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 238 |
-
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 239 |
-
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 240 |
-
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 241 |
-
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 242 |
-
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 243 |
-
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 244 |
-
"model.layers.28.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 245 |
-
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 246 |
-
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 247 |
-
"model.layers.28.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 248 |
-
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 249 |
-
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 250 |
-
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 251 |
-
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 252 |
-
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 253 |
-
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 254 |
-
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 255 |
-
"model.layers.29.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 256 |
-
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 257 |
-
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 258 |
-
"model.layers.29.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 259 |
-
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 260 |
-
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 261 |
-
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 262 |
-
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 263 |
-
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 264 |
-
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 265 |
-
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 266 |
-
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 267 |
-
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
-
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 269 |
-
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 270 |
-
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 271 |
-
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 272 |
-
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 273 |
-
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 274 |
-
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 275 |
-
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 276 |
-
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 277 |
-
"model.layers.30.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 278 |
-
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 279 |
-
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 280 |
-
"model.layers.30.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 281 |
-
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 282 |
-
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 283 |
-
"model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 284 |
-
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 285 |
-
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 286 |
-
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 287 |
-
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 288 |
-
"model.layers.31.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 289 |
-
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 290 |
-
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 291 |
-
"model.layers.31.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 292 |
-
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 293 |
-
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 294 |
-
"model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 295 |
-
"model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 296 |
-
"model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 297 |
-
"model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 298 |
-
"model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 299 |
-
"model.layers.32.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 300 |
-
"model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 301 |
-
"model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 302 |
-
"model.layers.32.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 303 |
-
"model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 304 |
-
"model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 305 |
-
"model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 306 |
-
"model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 307 |
-
"model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 308 |
-
"model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 309 |
-
"model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 310 |
-
"model.layers.33.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 311 |
-
"model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 312 |
-
"model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 313 |
-
"model.layers.33.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 314 |
-
"model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 315 |
-
"model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 316 |
-
"model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 317 |
-
"model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 318 |
-
"model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 319 |
-
"model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 320 |
-
"model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 321 |
-
"model.layers.34.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 322 |
-
"model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 323 |
-
"model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 324 |
-
"model.layers.34.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 325 |
-
"model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 326 |
-
"model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 327 |
-
"model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 328 |
-
"model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 329 |
-
"model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 330 |
-
"model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 331 |
-
"model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 332 |
-
"model.layers.35.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
|
| 333 |
-
"model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 334 |
-
"model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 335 |
-
"model.layers.35.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
|
| 336 |
-
"model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 337 |
-
"model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 338 |
-
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 339 |
-
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 340 |
-
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 341 |
-
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 342 |
-
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 343 |
-
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 344 |
-
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 345 |
-
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 346 |
-
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 347 |
-
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 348 |
-
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 349 |
-
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 350 |
-
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 351 |
-
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 352 |
-
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 353 |
-
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 354 |
-
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 355 |
-
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 356 |
-
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 357 |
-
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 358 |
-
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 359 |
-
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 360 |
-
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 361 |
-
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 362 |
-
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 363 |
-
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 364 |
-
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 365 |
-
"model.layers.6.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 366 |
-
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 367 |
-
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 368 |
-
"model.layers.6.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 369 |
-
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 370 |
-
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 371 |
-
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 372 |
-
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 373 |
-
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 374 |
-
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 375 |
-
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 376 |
-
"model.layers.7.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 377 |
-
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 378 |
-
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 379 |
-
"model.layers.7.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 380 |
-
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 381 |
-
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 382 |
-
"model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 383 |
-
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 384 |
-
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 385 |
-
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 386 |
-
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 387 |
-
"model.layers.8.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 388 |
-
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 389 |
-
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 390 |
-
"model.layers.8.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 391 |
-
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 392 |
-
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 393 |
-
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 394 |
-
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 395 |
-
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 396 |
-
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 397 |
-
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 398 |
-
"model.layers.9.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 399 |
-
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 400 |
-
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 401 |
-
"model.layers.9.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 402 |
-
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 403 |
-
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 404 |
-
"model.norm.weight": "model-00004-of-00004.safetensors"
|
| 405 |
-
}
|
| 406 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/rng_state_0.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:258c1e2c3a63db2f51212e850765e60b7cb8b33f7d5e4e9159643ce8adc99656
|
| 3 |
-
size 130
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/rng_state_1.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:b63ba8e1dd2b548f83977d34f8a1552a67bc66ce33488c9733fcada5b45b62aa
|
| 3 |
-
size 130
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/rng_state_2.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:1a0ba59dfefd101ded99c7e9f8efbbe53ce9a0276a30cec53f6fb02c129d1e08
|
| 3 |
-
size 130
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/rng_state_3.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:449bf3efd1254534866a15b011b5f515b7ed583db62d5b542cc09e02d0c247a6
|
| 3 |
-
size 130
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/special_tokens_map.json
DELETED
|
@@ -1,31 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"additional_special_tokens": [
|
| 3 |
-
"<|im_start|>",
|
| 4 |
-
"<|im_end|>",
|
| 5 |
-
"<|object_ref_start|>",
|
| 6 |
-
"<|object_ref_end|>",
|
| 7 |
-
"<|box_start|>",
|
| 8 |
-
"<|box_end|>",
|
| 9 |
-
"<|quad_start|>",
|
| 10 |
-
"<|quad_end|>",
|
| 11 |
-
"<|vision_start|>",
|
| 12 |
-
"<|vision_end|>",
|
| 13 |
-
"<|vision_pad|>",
|
| 14 |
-
"<|image_pad|>",
|
| 15 |
-
"<|video_pad|>"
|
| 16 |
-
],
|
| 17 |
-
"eos_token": {
|
| 18 |
-
"content": "<|im_end|>",
|
| 19 |
-
"lstrip": false,
|
| 20 |
-
"normalized": false,
|
| 21 |
-
"rstrip": false,
|
| 22 |
-
"single_word": false
|
| 23 |
-
},
|
| 24 |
-
"pad_token": {
|
| 25 |
-
"content": "<|endoftext|>",
|
| 26 |
-
"lstrip": false,
|
| 27 |
-
"normalized": false,
|
| 28 |
-
"rstrip": false,
|
| 29 |
-
"single_word": false
|
| 30 |
-
}
|
| 31 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/tokenizer.json
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:67cc0080ffd7555f723f423c27cfef314e1ad9d335c8b79f465c5faba1ed478b
|
| 3 |
-
size 11422821
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/tokenizer_config.json
DELETED
|
@@ -1,245 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"add_bos_token": false,
|
| 3 |
-
"add_prefix_space": false,
|
| 4 |
-
"added_tokens_decoder": {
|
| 5 |
-
"151643": {
|
| 6 |
-
"content": "<|endoftext|>",
|
| 7 |
-
"lstrip": false,
|
| 8 |
-
"normalized": false,
|
| 9 |
-
"rstrip": false,
|
| 10 |
-
"single_word": false,
|
| 11 |
-
"special": true
|
| 12 |
-
},
|
| 13 |
-
"151644": {
|
| 14 |
-
"content": "<|im_start|>",
|
| 15 |
-
"lstrip": false,
|
| 16 |
-
"normalized": false,
|
| 17 |
-
"rstrip": false,
|
| 18 |
-
"single_word": false,
|
| 19 |
-
"special": true
|
| 20 |
-
},
|
| 21 |
-
"151645": {
|
| 22 |
-
"content": "<|im_end|>",
|
| 23 |
-
"lstrip": false,
|
| 24 |
-
"normalized": false,
|
| 25 |
-
"rstrip": false,
|
| 26 |
-
"single_word": false,
|
| 27 |
-
"special": true
|
| 28 |
-
},
|
| 29 |
-
"151646": {
|
| 30 |
-
"content": "<|object_ref_start|>",
|
| 31 |
-
"lstrip": false,
|
| 32 |
-
"normalized": false,
|
| 33 |
-
"rstrip": false,
|
| 34 |
-
"single_word": false,
|
| 35 |
-
"special": true
|
| 36 |
-
},
|
| 37 |
-
"151647": {
|
| 38 |
-
"content": "<|object_ref_end|>",
|
| 39 |
-
"lstrip": false,
|
| 40 |
-
"normalized": false,
|
| 41 |
-
"rstrip": false,
|
| 42 |
-
"single_word": false,
|
| 43 |
-
"special": true
|
| 44 |
-
},
|
| 45 |
-
"151648": {
|
| 46 |
-
"content": "<|box_start|>",
|
| 47 |
-
"lstrip": false,
|
| 48 |
-
"normalized": false,
|
| 49 |
-
"rstrip": false,
|
| 50 |
-
"single_word": false,
|
| 51 |
-
"special": true
|
| 52 |
-
},
|
| 53 |
-
"151649": {
|
| 54 |
-
"content": "<|box_end|>",
|
| 55 |
-
"lstrip": false,
|
| 56 |
-
"normalized": false,
|
| 57 |
-
"rstrip": false,
|
| 58 |
-
"single_word": false,
|
| 59 |
-
"special": true
|
| 60 |
-
},
|
| 61 |
-
"151650": {
|
| 62 |
-
"content": "<|quad_start|>",
|
| 63 |
-
"lstrip": false,
|
| 64 |
-
"normalized": false,
|
| 65 |
-
"rstrip": false,
|
| 66 |
-
"single_word": false,
|
| 67 |
-
"special": true
|
| 68 |
-
},
|
| 69 |
-
"151651": {
|
| 70 |
-
"content": "<|quad_end|>",
|
| 71 |
-
"lstrip": false,
|
| 72 |
-
"normalized": false,
|
| 73 |
-
"rstrip": false,
|
| 74 |
-
"single_word": false,
|
| 75 |
-
"special": true
|
| 76 |
-
},
|
| 77 |
-
"151652": {
|
| 78 |
-
"content": "<|vision_start|>",
|
| 79 |
-
"lstrip": false,
|
| 80 |
-
"normalized": false,
|
| 81 |
-
"rstrip": false,
|
| 82 |
-
"single_word": false,
|
| 83 |
-
"special": true
|
| 84 |
-
},
|
| 85 |
-
"151653": {
|
| 86 |
-
"content": "<|vision_end|>",
|
| 87 |
-
"lstrip": false,
|
| 88 |
-
"normalized": false,
|
| 89 |
-
"rstrip": false,
|
| 90 |
-
"single_word": false,
|
| 91 |
-
"special": true
|
| 92 |
-
},
|
| 93 |
-
"151654": {
|
| 94 |
-
"content": "<|vision_pad|>",
|
| 95 |
-
"lstrip": false,
|
| 96 |
-
"normalized": false,
|
| 97 |
-
"rstrip": false,
|
| 98 |
-
"single_word": false,
|
| 99 |
-
"special": true
|
| 100 |
-
},
|
| 101 |
-
"151655": {
|
| 102 |
-
"content": "<|image_pad|>",
|
| 103 |
-
"lstrip": false,
|
| 104 |
-
"normalized": false,
|
| 105 |
-
"rstrip": false,
|
| 106 |
-
"single_word": false,
|
| 107 |
-
"special": true
|
| 108 |
-
},
|
| 109 |
-
"151656": {
|
| 110 |
-
"content": "<|video_pad|>",
|
| 111 |
-
"lstrip": false,
|
| 112 |
-
"normalized": false,
|
| 113 |
-
"rstrip": false,
|
| 114 |
-
"single_word": false,
|
| 115 |
-
"special": true
|
| 116 |
-
},
|
| 117 |
-
"151657": {
|
| 118 |
-
"content": "<tool_call>",
|
| 119 |
-
"lstrip": false,
|
| 120 |
-
"normalized": false,
|
| 121 |
-
"rstrip": false,
|
| 122 |
-
"single_word": false,
|
| 123 |
-
"special": false
|
| 124 |
-
},
|
| 125 |
-
"151658": {
|
| 126 |
-
"content": "</tool_call>",
|
| 127 |
-
"lstrip": false,
|
| 128 |
-
"normalized": false,
|
| 129 |
-
"rstrip": false,
|
| 130 |
-
"single_word": false,
|
| 131 |
-
"special": false
|
| 132 |
-
},
|
| 133 |
-
"151659": {
|
| 134 |
-
"content": "<|fim_prefix|>",
|
| 135 |
-
"lstrip": false,
|
| 136 |
-
"normalized": false,
|
| 137 |
-
"rstrip": false,
|
| 138 |
-
"single_word": false,
|
| 139 |
-
"special": false
|
| 140 |
-
},
|
| 141 |
-
"151660": {
|
| 142 |
-
"content": "<|fim_middle|>",
|
| 143 |
-
"lstrip": false,
|
| 144 |
-
"normalized": false,
|
| 145 |
-
"rstrip": false,
|
| 146 |
-
"single_word": false,
|
| 147 |
-
"special": false
|
| 148 |
-
},
|
| 149 |
-
"151661": {
|
| 150 |
-
"content": "<|fim_suffix|>",
|
| 151 |
-
"lstrip": false,
|
| 152 |
-
"normalized": false,
|
| 153 |
-
"rstrip": false,
|
| 154 |
-
"single_word": false,
|
| 155 |
-
"special": false
|
| 156 |
-
},
|
| 157 |
-
"151662": {
|
| 158 |
-
"content": "<|fim_pad|>",
|
| 159 |
-
"lstrip": false,
|
| 160 |
-
"normalized": false,
|
| 161 |
-
"rstrip": false,
|
| 162 |
-
"single_word": false,
|
| 163 |
-
"special": false
|
| 164 |
-
},
|
| 165 |
-
"151663": {
|
| 166 |
-
"content": "<|repo_name|>",
|
| 167 |
-
"lstrip": false,
|
| 168 |
-
"normalized": false,
|
| 169 |
-
"rstrip": false,
|
| 170 |
-
"single_word": false,
|
| 171 |
-
"special": false
|
| 172 |
-
},
|
| 173 |
-
"151664": {
|
| 174 |
-
"content": "<|file_sep|>",
|
| 175 |
-
"lstrip": false,
|
| 176 |
-
"normalized": false,
|
| 177 |
-
"rstrip": false,
|
| 178 |
-
"single_word": false,
|
| 179 |
-
"special": false
|
| 180 |
-
},
|
| 181 |
-
"151665": {
|
| 182 |
-
"content": "<tool_response>",
|
| 183 |
-
"lstrip": false,
|
| 184 |
-
"normalized": false,
|
| 185 |
-
"rstrip": false,
|
| 186 |
-
"single_word": false,
|
| 187 |
-
"special": false
|
| 188 |
-
},
|
| 189 |
-
"151666": {
|
| 190 |
-
"content": "</tool_response>",
|
| 191 |
-
"lstrip": false,
|
| 192 |
-
"normalized": false,
|
| 193 |
-
"rstrip": false,
|
| 194 |
-
"single_word": false,
|
| 195 |
-
"special": false
|
| 196 |
-
},
|
| 197 |
-
"151667": {
|
| 198 |
-
"content": "<think>",
|
| 199 |
-
"lstrip": false,
|
| 200 |
-
"normalized": false,
|
| 201 |
-
"rstrip": false,
|
| 202 |
-
"single_word": false,
|
| 203 |
-
"special": false
|
| 204 |
-
},
|
| 205 |
-
"151668": {
|
| 206 |
-
"content": "</think>",
|
| 207 |
-
"lstrip": false,
|
| 208 |
-
"normalized": false,
|
| 209 |
-
"rstrip": false,
|
| 210 |
-
"single_word": false,
|
| 211 |
-
"special": false
|
| 212 |
-
}
|
| 213 |
-
},
|
| 214 |
-
"additional_special_tokens": [
|
| 215 |
-
"<|im_start|>",
|
| 216 |
-
"<|im_end|>",
|
| 217 |
-
"<|object_ref_start|>",
|
| 218 |
-
"<|object_ref_end|>",
|
| 219 |
-
"<|box_start|>",
|
| 220 |
-
"<|box_end|>",
|
| 221 |
-
"<|quad_start|>",
|
| 222 |
-
"<|quad_end|>",
|
| 223 |
-
"<|vision_start|>",
|
| 224 |
-
"<|vision_end|>",
|
| 225 |
-
"<|vision_pad|>",
|
| 226 |
-
"<|image_pad|>",
|
| 227 |
-
"<|video_pad|>"
|
| 228 |
-
],
|
| 229 |
-
"bos_token": null,
|
| 230 |
-
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if message.content is string %}\n {%- set content = message.content %}\n {%- else %}\n {%- set content = '' %}\n {%- endif %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is string %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in content %}\n {%- set reasoning_content = content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- set content = content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
|
| 231 |
-
"clean_up_tokenization_spaces": false,
|
| 232 |
-
"eos_token": "<|im_end|>",
|
| 233 |
-
"errors": "replace",
|
| 234 |
-
"extra_special_tokens": {},
|
| 235 |
-
"max_length": 16384,
|
| 236 |
-
"model_max_length": 131072,
|
| 237 |
-
"pad_token": "<|endoftext|>",
|
| 238 |
-
"padding_side": "left",
|
| 239 |
-
"split_special_tokens": false,
|
| 240 |
-
"stride": 0,
|
| 241 |
-
"tokenizer_class": "Qwen2Tokenizer",
|
| 242 |
-
"truncation_side": "right",
|
| 243 |
-
"truncation_strategy": "longest_first",
|
| 244 |
-
"unk_token": null
|
| 245 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/trainer_state.json
DELETED
|
@@ -1,664 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"best_global_step": null,
|
| 3 |
-
"best_metric": null,
|
| 4 |
-
"best_model_checkpoint": null,
|
| 5 |
-
"epoch": 0.1568627450980392,
|
| 6 |
-
"eval_steps": 500,
|
| 7 |
-
"global_step": 30,
|
| 8 |
-
"is_hyper_param_search": false,
|
| 9 |
-
"is_local_process_zero": true,
|
| 10 |
-
"is_world_process_zero": true,
|
| 11 |
-
"log_history": [
|
| 12 |
-
{
|
| 13 |
-
"accuracy_delta": -0.03125,
|
| 14 |
-
"baseline_accuracy": 0.5625,
|
| 15 |
-
"completion_length": 1660.1953125,
|
| 16 |
-
"degradation_rate": 0.1875,
|
| 17 |
-
"epoch": 0.00522875816993464,
|
| 18 |
-
"grad_norm": 1.8285036167620026,
|
| 19 |
-
"improvement_rate": 0.15625,
|
| 20 |
-
"kl": 0.0,
|
| 21 |
-
"learning_rate": 2e-06,
|
| 22 |
-
"loss": 0.0,
|
| 23 |
-
"reward": 0.24004681408405304,
|
| 24 |
-
"reward_std": 0.25635848194360733,
|
| 25 |
-
"rewards/AdaptiveTeachingReward": 0.24004681408405304,
|
| 26 |
-
"step": 1,
|
| 27 |
-
"student_accuracy": 0.53125,
|
| 28 |
-
"student_approach_length": 500.0,
|
| 29 |
-
"teaching_length_mean": 1349.5,
|
| 30 |
-
"teaching_length_std": 1533.2601122433693,
|
| 31 |
-
"token_efficiency": 0.01778511088825826
|
| 32 |
-
},
|
| 33 |
-
{
|
| 34 |
-
"accuracy_delta": -0.21875,
|
| 35 |
-
"baseline_accuracy": 1.0,
|
| 36 |
-
"completion_length": 2174.171875,
|
| 37 |
-
"degradation_rate": 0.21875,
|
| 38 |
-
"epoch": 0.01045751633986928,
|
| 39 |
-
"grad_norm": 1.2225533588422857,
|
| 40 |
-
"improvement_rate": 0.0,
|
| 41 |
-
"kl": 0.002572178840637207,
|
| 42 |
-
"learning_rate": 2e-06,
|
| 43 |
-
"loss": 0.0001,
|
| 44 |
-
"reward": 0.2656950503587723,
|
| 45 |
-
"reward_std": 0.17467603832483292,
|
| 46 |
-
"rewards/AdaptiveTeachingReward": 0.2656950503587723,
|
| 47 |
-
"step": 2,
|
| 48 |
-
"student_accuracy": 0.78125,
|
| 49 |
-
"student_approach_length": 489.875,
|
| 50 |
-
"teaching_length_mean": 1645.90625,
|
| 51 |
-
"teaching_length_std": 1777.2254866782437,
|
| 52 |
-
"token_efficiency": 0.016061369340544678
|
| 53 |
-
},
|
| 54 |
-
{
|
| 55 |
-
"accuracy_delta": -0.0625,
|
| 56 |
-
"baseline_accuracy": 0.0625,
|
| 57 |
-
"completion_length": 2889.65625,
|
| 58 |
-
"degradation_rate": 0.0625,
|
| 59 |
-
"epoch": 0.01568627450980392,
|
| 60 |
-
"grad_norm": 0.4912196165940296,
|
| 61 |
-
"improvement_rate": 0.0,
|
| 62 |
-
"kl": 0.0021309852600097656,
|
| 63 |
-
"learning_rate": 2e-06,
|
| 64 |
-
"loss": 0.0001,
|
| 65 |
-
"reward": 0.1566198617219925,
|
| 66 |
-
"reward_std": 0.17452973127365112,
|
| 67 |
-
"rewards/AdaptiveTeachingReward": 0.1566198617219925,
|
| 68 |
-
"step": 3,
|
| 69 |
-
"student_accuracy": 0.0,
|
| 70 |
-
"student_approach_length": 500.0,
|
| 71 |
-
"teaching_length_mean": 3435.71875,
|
| 72 |
-
"teaching_length_std": 874.6175996443687,
|
| 73 |
-
"token_efficiency": 0.005029539554335019
|
| 74 |
-
},
|
| 75 |
-
{
|
| 76 |
-
"accuracy_delta": 0.0,
|
| 77 |
-
"baseline_accuracy": 0.0,
|
| 78 |
-
"completion_length": 1765.4765625,
|
| 79 |
-
"degradation_rate": 0.0,
|
| 80 |
-
"epoch": 0.02091503267973856,
|
| 81 |
-
"grad_norm": 0.014919439029800962,
|
| 82 |
-
"improvement_rate": 0.0,
|
| 83 |
-
"kl": 0.0024797916412353516,
|
| 84 |
-
"learning_rate": 2e-06,
|
| 85 |
-
"loss": 0.0001,
|
| 86 |
-
"reward": 0.0,
|
| 87 |
-
"reward_std": 0.0,
|
| 88 |
-
"rewards/AdaptiveTeachingReward": 0.0,
|
| 89 |
-
"step": 4,
|
| 90 |
-
"student_accuracy": 0.0,
|
| 91 |
-
"student_approach_length": 500.0,
|
| 92 |
-
"teaching_length_mean": 1644.53125,
|
| 93 |
-
"teaching_length_std": 1544.9233390329066,
|
| 94 |
-
"token_efficiency": 0.0
|
| 95 |
-
},
|
| 96 |
-
{
|
| 97 |
-
"accuracy_delta": 0.1875,
|
| 98 |
-
"baseline_accuracy": 0.375,
|
| 99 |
-
"completion_length": 2330.296875,
|
| 100 |
-
"degradation_rate": 0.09375,
|
| 101 |
-
"epoch": 0.026143790849673203,
|
| 102 |
-
"grad_norm": 1.6480657403271404,
|
| 103 |
-
"improvement_rate": 0.28125,
|
| 104 |
-
"kl": 0.002542257308959961,
|
| 105 |
-
"learning_rate": 2e-06,
|
| 106 |
-
"loss": 0.0001,
|
| 107 |
-
"reward": 0.293629452586174,
|
| 108 |
-
"reward_std": 0.31043318659067154,
|
| 109 |
-
"rewards/AdaptiveTeachingReward": 0.293629452586174,
|
| 110 |
-
"step": 5,
|
| 111 |
-
"student_accuracy": 0.5625,
|
| 112 |
-
"student_approach_length": 500.0,
|
| 113 |
-
"teaching_length_mean": 2543.6875,
|
| 114 |
-
"teaching_length_std": 1157.76463240177,
|
| 115 |
-
"token_efficiency": 0.015775285003662067
|
| 116 |
-
},
|
| 117 |
-
{
|
| 118 |
-
"accuracy_delta": -0.125,
|
| 119 |
-
"baseline_accuracy": 0.375,
|
| 120 |
-
"completion_length": 2799.2265625,
|
| 121 |
-
"degradation_rate": 0.21875,
|
| 122 |
-
"epoch": 0.03137254901960784,
|
| 123 |
-
"grad_norm": 1.3626772466174568,
|
| 124 |
-
"improvement_rate": 0.09375,
|
| 125 |
-
"kl": 0.0024237632751464844,
|
| 126 |
-
"learning_rate": 2e-06,
|
| 127 |
-
"loss": 0.0001,
|
| 128 |
-
"reward": 0.297846183180809,
|
| 129 |
-
"reward_std": 0.1792445182800293,
|
| 130 |
-
"rewards/AdaptiveTeachingReward": 0.297846183180809,
|
| 131 |
-
"step": 6,
|
| 132 |
-
"student_accuracy": 0.25,
|
| 133 |
-
"student_approach_length": 500.0,
|
| 134 |
-
"teaching_length_mean": 3300.46875,
|
| 135 |
-
"teaching_length_std": 1322.463354762313,
|
| 136 |
-
"token_efficiency": 0.008984860526379333
|
| 137 |
-
},
|
| 138 |
-
{
|
| 139 |
-
"accuracy_delta": 0.15625,
|
| 140 |
-
"baseline_accuracy": 0.09375,
|
| 141 |
-
"completion_length": 2839.59375,
|
| 142 |
-
"degradation_rate": 0.0,
|
| 143 |
-
"epoch": 0.036601307189542485,
|
| 144 |
-
"grad_norm": 1.0148015671601693,
|
| 145 |
-
"improvement_rate": 0.15625,
|
| 146 |
-
"kl": 0.0022563934326171875,
|
| 147 |
-
"learning_rate": 2e-06,
|
| 148 |
-
"loss": 0.0001,
|
| 149 |
-
"reward": 0.22244123369455338,
|
| 150 |
-
"reward_std": 0.32708095014095306,
|
| 151 |
-
"rewards/AdaptiveTeachingReward": 0.22244123369455338,
|
| 152 |
-
"step": 7,
|
| 153 |
-
"student_accuracy": 0.25,
|
| 154 |
-
"student_approach_length": 500.0,
|
| 155 |
-
"teaching_length_mean": 2663.28125,
|
| 156 |
-
"teaching_length_std": 1263.471554191286,
|
| 157 |
-
"token_efficiency": 0.009322577760442718
|
| 158 |
-
},
|
| 159 |
-
{
|
| 160 |
-
"accuracy_delta": 0.03125,
|
| 161 |
-
"baseline_accuracy": 0.34375,
|
| 162 |
-
"completion_length": 2997.0234375,
|
| 163 |
-
"degradation_rate": 0.0625,
|
| 164 |
-
"epoch": 0.04183006535947712,
|
| 165 |
-
"grad_norm": 1.0933058629769363,
|
| 166 |
-
"improvement_rate": 0.09375,
|
| 167 |
-
"kl": 0.00222015380859375,
|
| 168 |
-
"learning_rate": 2e-06,
|
| 169 |
-
"loss": 0.0001,
|
| 170 |
-
"reward": 0.4145798534154892,
|
| 171 |
-
"reward_std": 0.348370686173439,
|
| 172 |
-
"rewards/AdaptiveTeachingReward": 0.4145798534154892,
|
| 173 |
-
"step": 8,
|
| 174 |
-
"student_accuracy": 0.375,
|
| 175 |
-
"student_approach_length": 500.0,
|
| 176 |
-
"teaching_length_mean": 2859.9375,
|
| 177 |
-
"teaching_length_std": 1548.3925018635746,
|
| 178 |
-
"token_efficiency": 0.014895284304358753
|
| 179 |
-
},
|
| 180 |
-
{
|
| 181 |
-
"accuracy_delta": 0.0,
|
| 182 |
-
"baseline_accuracy": 0.0,
|
| 183 |
-
"completion_length": 2069.3515625,
|
| 184 |
-
"degradation_rate": 0.0,
|
| 185 |
-
"epoch": 0.047058823529411764,
|
| 186 |
-
"grad_norm": 0.6907373861546955,
|
| 187 |
-
"improvement_rate": 0.0,
|
| 188 |
-
"kl": 0.0022356510162353516,
|
| 189 |
-
"learning_rate": 2e-06,
|
| 190 |
-
"loss": 0.0001,
|
| 191 |
-
"reward": 0.13787749409675598,
|
| 192 |
-
"reward_std": 0.08163860440254211,
|
| 193 |
-
"rewards/AdaptiveTeachingReward": 0.13787749409675598,
|
| 194 |
-
"step": 9,
|
| 195 |
-
"student_accuracy": 0.0,
|
| 196 |
-
"student_approach_length": 500.0,
|
| 197 |
-
"teaching_length_mean": 1586.78125,
|
| 198 |
-
"teaching_length_std": 1393.5538468081056,
|
| 199 |
-
"token_efficiency": 0.009196431155361413
|
| 200 |
-
},
|
| 201 |
-
{
|
| 202 |
-
"accuracy_delta": 0.0,
|
| 203 |
-
"baseline_accuracy": 0.0,
|
| 204 |
-
"completion_length": 2533.3203125,
|
| 205 |
-
"degradation_rate": 0.0,
|
| 206 |
-
"epoch": 0.05228758169934641,
|
| 207 |
-
"grad_norm": 0.9569337200656036,
|
| 208 |
-
"improvement_rate": 0.0,
|
| 209 |
-
"kl": 0.002455472946166992,
|
| 210 |
-
"learning_rate": 2e-06,
|
| 211 |
-
"loss": 0.0001,
|
| 212 |
-
"reward": 0.2650887817144394,
|
| 213 |
-
"reward_std": 0.1834174394607544,
|
| 214 |
-
"rewards/AdaptiveTeachingReward": 0.2650887817144394,
|
| 215 |
-
"step": 10,
|
| 216 |
-
"student_accuracy": 0.0,
|
| 217 |
-
"student_approach_length": 500.0,
|
| 218 |
-
"teaching_length_mean": 2718.53125,
|
| 219 |
-
"teaching_length_std": 1545.6357044636015,
|
| 220 |
-
"token_efficiency": 0.00983657689669804
|
| 221 |
-
},
|
| 222 |
-
{
|
| 223 |
-
"accuracy_delta": 0.0,
|
| 224 |
-
"baseline_accuracy": 0.0,
|
| 225 |
-
"completion_length": 2366.4609375,
|
| 226 |
-
"degradation_rate": 0.0,
|
| 227 |
-
"epoch": 0.05751633986928104,
|
| 228 |
-
"grad_norm": 0.1992844149700769,
|
| 229 |
-
"improvement_rate": 0.0,
|
| 230 |
-
"kl": 0.0023772716522216797,
|
| 231 |
-
"learning_rate": 2e-06,
|
| 232 |
-
"loss": 0.0001,
|
| 233 |
-
"reward": 0.00799931213259697,
|
| 234 |
-
"reward_std": 0.045250944793224335,
|
| 235 |
-
"rewards/AdaptiveTeachingReward": 0.00799931213259697,
|
| 236 |
-
"step": 11,
|
| 237 |
-
"student_accuracy": 0.0,
|
| 238 |
-
"student_approach_length": 500.0,
|
| 239 |
-
"teaching_length_mean": 2560.28125,
|
| 240 |
-
"teaching_length_std": 1264.0513369895032,
|
| 241 |
-
"token_efficiency": 0.000244351732796639
|
| 242 |
-
},
|
| 243 |
-
{
|
| 244 |
-
"accuracy_delta": 0.0,
|
| 245 |
-
"baseline_accuracy": 0.0,
|
| 246 |
-
"completion_length": 2429.25,
|
| 247 |
-
"degradation_rate": 0.0,
|
| 248 |
-
"epoch": 0.06274509803921569,
|
| 249 |
-
"grad_norm": 0.02438642631727396,
|
| 250 |
-
"improvement_rate": 0.0,
|
| 251 |
-
"kl": 0.0028073787689208984,
|
| 252 |
-
"learning_rate": 2e-06,
|
| 253 |
-
"loss": 0.0001,
|
| 254 |
-
"reward": 0.0,
|
| 255 |
-
"reward_std": 0.0,
|
| 256 |
-
"rewards/AdaptiveTeachingReward": 0.0,
|
| 257 |
-
"step": 12,
|
| 258 |
-
"student_accuracy": 0.0,
|
| 259 |
-
"student_approach_length": 500.0,
|
| 260 |
-
"teaching_length_mean": 2684.0,
|
| 261 |
-
"teaching_length_std": 1537.9383137400418,
|
| 262 |
-
"token_efficiency": 0.0
|
| 263 |
-
},
|
| 264 |
-
{
|
| 265 |
-
"accuracy_delta": 0.03125,
|
| 266 |
-
"baseline_accuracy": 0.03125,
|
| 267 |
-
"completion_length": 2985.0234375,
|
| 268 |
-
"degradation_rate": 0.03125,
|
| 269 |
-
"epoch": 0.06797385620915032,
|
| 270 |
-
"grad_norm": 1.9377263264415499,
|
| 271 |
-
"improvement_rate": 0.0625,
|
| 272 |
-
"kl": 0.002295255661010742,
|
| 273 |
-
"learning_rate": 2e-06,
|
| 274 |
-
"loss": 0.0001,
|
| 275 |
-
"reward": 0.3229658156633377,
|
| 276 |
-
"reward_std": 0.2836003005504608,
|
| 277 |
-
"rewards/AdaptiveTeachingReward": 0.3229658156633377,
|
| 278 |
-
"step": 13,
|
| 279 |
-
"student_accuracy": 0.0625,
|
| 280 |
-
"student_approach_length": 500.0,
|
| 281 |
-
"teaching_length_mean": 2764.78125,
|
| 282 |
-
"teaching_length_std": 1359.6938149421062,
|
| 283 |
-
"token_efficiency": 0.011864912871618307
|
| 284 |
-
},
|
| 285 |
-
{
|
| 286 |
-
"accuracy_delta": 0.0,
|
| 287 |
-
"baseline_accuracy": 0.40625,
|
| 288 |
-
"completion_length": 2860.7890625,
|
| 289 |
-
"degradation_rate": 0.03125,
|
| 290 |
-
"epoch": 0.07320261437908497,
|
| 291 |
-
"grad_norm": 0.7397348398480618,
|
| 292 |
-
"improvement_rate": 0.03125,
|
| 293 |
-
"kl": 0.0022339820861816406,
|
| 294 |
-
"learning_rate": 2e-06,
|
| 295 |
-
"loss": 0.0001,
|
| 296 |
-
"reward": 0.3183840811252594,
|
| 297 |
-
"reward_std": 0.2730633243918419,
|
| 298 |
-
"rewards/AdaptiveTeachingReward": 0.3183840811252594,
|
| 299 |
-
"step": 14,
|
| 300 |
-
"student_accuracy": 0.40625,
|
| 301 |
-
"student_approach_length": 500.0,
|
| 302 |
-
"teaching_length_mean": 3300.75,
|
| 303 |
-
"teaching_length_std": 1258.5522551939885,
|
| 304 |
-
"token_efficiency": 0.009677591351820222
|
| 305 |
-
},
|
| 306 |
-
{
|
| 307 |
-
"accuracy_delta": -0.25,
|
| 308 |
-
"baseline_accuracy": 0.59375,
|
| 309 |
-
"completion_length": 2667.375,
|
| 310 |
-
"degradation_rate": 0.375,
|
| 311 |
-
"epoch": 0.0784313725490196,
|
| 312 |
-
"grad_norm": 0.591091766464445,
|
| 313 |
-
"improvement_rate": 0.125,
|
| 314 |
-
"kl": 0.0020873546600341797,
|
| 315 |
-
"learning_rate": 2e-06,
|
| 316 |
-
"loss": 0.0001,
|
| 317 |
-
"reward": 0.14508739858865738,
|
| 318 |
-
"reward_std": 0.1915995106101036,
|
| 319 |
-
"rewards/AdaptiveTeachingReward": 0.14508739858865738,
|
| 320 |
-
"step": 15,
|
| 321 |
-
"student_accuracy": 0.34375,
|
| 322 |
-
"student_approach_length": 500.0,
|
| 323 |
-
"teaching_length_mean": 2580.1875,
|
| 324 |
-
"teaching_length_std": 1411.9177183341415,
|
| 325 |
-
"token_efficiency": 0.006345218750950054
|
| 326 |
-
},
|
| 327 |
-
{
|
| 328 |
-
"accuracy_delta": -0.125,
|
| 329 |
-
"baseline_accuracy": 0.78125,
|
| 330 |
-
"completion_length": 2397.8046875,
|
| 331 |
-
"degradation_rate": 0.28125,
|
| 332 |
-
"epoch": 0.08366013071895424,
|
| 333 |
-
"grad_norm": 1.0467841728187868,
|
| 334 |
-
"improvement_rate": 0.15625,
|
| 335 |
-
"kl": 0.0020101070404052734,
|
| 336 |
-
"learning_rate": 2e-06,
|
| 337 |
-
"loss": 0.0001,
|
| 338 |
-
"reward": 0.29722827672958374,
|
| 339 |
-
"reward_std": 0.29581306129693985,
|
| 340 |
-
"rewards/AdaptiveTeachingReward": 0.29722827672958374,
|
| 341 |
-
"step": 16,
|
| 342 |
-
"student_accuracy": 0.65625,
|
| 343 |
-
"student_approach_length": 500.0,
|
| 344 |
-
"teaching_length_mean": 1867.65625,
|
| 345 |
-
"teaching_length_std": 1645.2406135166107,
|
| 346 |
-
"token_efficiency": 0.016315762169946447
|
| 347 |
-
},
|
| 348 |
-
{
|
| 349 |
-
"accuracy_delta": 0.0,
|
| 350 |
-
"baseline_accuracy": 0.4375,
|
| 351 |
-
"completion_length": 2681.4296875,
|
| 352 |
-
"degradation_rate": 0.0625,
|
| 353 |
-
"epoch": 0.08888888888888889,
|
| 354 |
-
"grad_norm": 1.0178368263353954,
|
| 355 |
-
"improvement_rate": 0.0625,
|
| 356 |
-
"kl": 0.0022170543670654297,
|
| 357 |
-
"learning_rate": 2e-06,
|
| 358 |
-
"loss": 0.0001,
|
| 359 |
-
"reward": 0.27442795038223267,
|
| 360 |
-
"reward_std": 0.24267160892486572,
|
| 361 |
-
"rewards/AdaptiveTeachingReward": 0.27442795038223267,
|
| 362 |
-
"step": 17,
|
| 363 |
-
"student_accuracy": 0.4375,
|
| 364 |
-
"student_approach_length": 500.0,
|
| 365 |
-
"teaching_length_mean": 1946.4375,
|
| 366 |
-
"teaching_length_std": 1595.4173133278073,
|
| 367 |
-
"token_efficiency": 0.01725690617086827
|
| 368 |
-
},
|
| 369 |
-
{
|
| 370 |
-
"accuracy_delta": 0.0,
|
| 371 |
-
"baseline_accuracy": 0.0,
|
| 372 |
-
"completion_length": 2260.1484375,
|
| 373 |
-
"degradation_rate": 0.0,
|
| 374 |
-
"epoch": 0.09411764705882353,
|
| 375 |
-
"grad_norm": 0.39094525161531923,
|
| 376 |
-
"improvement_rate": 0.0,
|
| 377 |
-
"kl": 0.0026335716247558594,
|
| 378 |
-
"learning_rate": 2e-06,
|
| 379 |
-
"loss": 0.0001,
|
| 380 |
-
"reward": 0.15987491607666016,
|
| 381 |
-
"reward_std": 0.12795361876487732,
|
| 382 |
-
"rewards/AdaptiveTeachingReward": 0.15987491607666016,
|
| 383 |
-
"step": 18,
|
| 384 |
-
"student_accuracy": 0.0,
|
| 385 |
-
"student_approach_length": 500.0,
|
| 386 |
-
"teaching_length_mean": 2452.8125,
|
| 387 |
-
"teaching_length_std": 1687.6677585883976,
|
| 388 |
-
"token_efficiency": 0.00733118954839666
|
| 389 |
-
},
|
| 390 |
-
{
|
| 391 |
-
"accuracy_delta": 0.09375,
|
| 392 |
-
"baseline_accuracy": 0.34375,
|
| 393 |
-
"completion_length": 2509.359375,
|
| 394 |
-
"degradation_rate": 0.0,
|
| 395 |
-
"epoch": 0.09934640522875816,
|
| 396 |
-
"grad_norm": 1.112027848483532,
|
| 397 |
-
"improvement_rate": 0.09375,
|
| 398 |
-
"kl": 0.0021845102310180664,
|
| 399 |
-
"learning_rate": 2e-06,
|
| 400 |
-
"loss": 0.0001,
|
| 401 |
-
"reward": 0.32069824635982513,
|
| 402 |
-
"reward_std": 0.1779022440314293,
|
| 403 |
-
"rewards/AdaptiveTeachingReward": 0.32069824635982513,
|
| 404 |
-
"step": 19,
|
| 405 |
-
"student_accuracy": 0.4375,
|
| 406 |
-
"student_approach_length": 500.0,
|
| 407 |
-
"teaching_length_mean": 1688.25,
|
| 408 |
-
"teaching_length_std": 1591.1127810270257,
|
| 409 |
-
"token_efficiency": 0.02000900419695598
|
| 410 |
-
},
|
| 411 |
-
{
|
| 412 |
-
"accuracy_delta": 0.15625,
|
| 413 |
-
"baseline_accuracy": 0.25,
|
| 414 |
-
"completion_length": 2566.109375,
|
| 415 |
-
"degradation_rate": 0.125,
|
| 416 |
-
"epoch": 0.10457516339869281,
|
| 417 |
-
"grad_norm": 0.635668741879516,
|
| 418 |
-
"improvement_rate": 0.28125,
|
| 419 |
-
"kl": 0.0020592212677001953,
|
| 420 |
-
"learning_rate": 2e-06,
|
| 421 |
-
"loss": 0.0001,
|
| 422 |
-
"reward": 0.3237999305129051,
|
| 423 |
-
"reward_std": 0.29250405728816986,
|
| 424 |
-
"rewards/AdaptiveTeachingReward": 0.3237999305129051,
|
| 425 |
-
"step": 20,
|
| 426 |
-
"student_accuracy": 0.40625,
|
| 427 |
-
"student_approach_length": 500.0,
|
| 428 |
-
"teaching_length_mean": 3000.8125,
|
| 429 |
-
"teaching_length_std": 1146.9664495361749,
|
| 430 |
-
"token_efficiency": 0.009248973352977438
|
| 431 |
-
},
|
| 432 |
-
{
|
| 433 |
-
"accuracy_delta": -0.15625,
|
| 434 |
-
"baseline_accuracy": 0.5,
|
| 435 |
-
"completion_length": 2821.34375,
|
| 436 |
-
"degradation_rate": 0.15625,
|
| 437 |
-
"epoch": 0.10980392156862745,
|
| 438 |
-
"grad_norm": 1.038632983891241,
|
| 439 |
-
"improvement_rate": 0.0,
|
| 440 |
-
"kl": 0.0022677183151245117,
|
| 441 |
-
"learning_rate": 2e-06,
|
| 442 |
-
"loss": 0.0001,
|
| 443 |
-
"reward": 0.26167380064725876,
|
| 444 |
-
"reward_std": 0.20054005086421967,
|
| 445 |
-
"rewards/AdaptiveTeachingReward": 0.26167380064725876,
|
| 446 |
-
"step": 21,
|
| 447 |
-
"student_accuracy": 0.34375,
|
| 448 |
-
"student_approach_length": 500.0,
|
| 449 |
-
"teaching_length_mean": 2324.625,
|
| 450 |
-
"teaching_length_std": 1783.1465396131703,
|
| 451 |
-
"token_efficiency": 0.011391752427342916
|
| 452 |
-
},
|
| 453 |
-
{
|
| 454 |
-
"accuracy_delta": -0.0625,
|
| 455 |
-
"baseline_accuracy": 0.6875,
|
| 456 |
-
"completion_length": 1981.4453125,
|
| 457 |
-
"degradation_rate": 0.21875,
|
| 458 |
-
"epoch": 0.11503267973856209,
|
| 459 |
-
"grad_norm": 1.0591629807323937,
|
| 460 |
-
"improvement_rate": 0.15625,
|
| 461 |
-
"kl": 0.0025501251220703125,
|
| 462 |
-
"learning_rate": 2e-06,
|
| 463 |
-
"loss": 0.0001,
|
| 464 |
-
"reward": 0.3476671576499939,
|
| 465 |
-
"reward_std": 0.32001765072345734,
|
| 466 |
-
"rewards/AdaptiveTeachingReward": 0.3476671576499939,
|
| 467 |
-
"step": 22,
|
| 468 |
-
"student_accuracy": 0.625,
|
| 469 |
-
"student_approach_length": 500.0,
|
| 470 |
-
"teaching_length_mean": 1747.6875,
|
| 471 |
-
"teaching_length_std": 1544.1982674617702,
|
| 472 |
-
"token_efficiency": 0.019930595836054183
|
| 473 |
-
},
|
| 474 |
-
{
|
| 475 |
-
"accuracy_delta": 0.0,
|
| 476 |
-
"baseline_accuracy": 0.6875,
|
| 477 |
-
"completion_length": 2491.2109375,
|
| 478 |
-
"degradation_rate": 0.15625,
|
| 479 |
-
"epoch": 0.12026143790849673,
|
| 480 |
-
"grad_norm": 0.8736384977021919,
|
| 481 |
-
"improvement_rate": 0.15625,
|
| 482 |
-
"kl": 0.002077817916870117,
|
| 483 |
-
"learning_rate": 2e-06,
|
| 484 |
-
"loss": 0.0001,
|
| 485 |
-
"reward": 0.3966591954231262,
|
| 486 |
-
"reward_std": 0.35394637286663055,
|
| 487 |
-
"rewards/AdaptiveTeachingReward": 0.3966591954231262,
|
| 488 |
-
"step": 23,
|
| 489 |
-
"student_accuracy": 0.6875,
|
| 490 |
-
"student_approach_length": 500.0,
|
| 491 |
-
"teaching_length_mean": 2244.40625,
|
| 492 |
-
"teaching_length_std": 1464.1512714006012,
|
| 493 |
-
"token_efficiency": 0.020170202633726
|
| 494 |
-
},
|
| 495 |
-
{
|
| 496 |
-
"accuracy_delta": -0.0625,
|
| 497 |
-
"baseline_accuracy": 0.40625,
|
| 498 |
-
"completion_length": 3183.6796875,
|
| 499 |
-
"degradation_rate": 0.09375,
|
| 500 |
-
"epoch": 0.12549019607843137,
|
| 501 |
-
"grad_norm": 0.731937384244321,
|
| 502 |
-
"improvement_rate": 0.03125,
|
| 503 |
-
"kl": 0.002083301544189453,
|
| 504 |
-
"learning_rate": 2e-06,
|
| 505 |
-
"loss": 0.0001,
|
| 506 |
-
"reward": 0.24638524651527405,
|
| 507 |
-
"reward_std": 0.25337880849838257,
|
| 508 |
-
"rewards/AdaptiveTeachingReward": 0.24638524651527405,
|
| 509 |
-
"step": 24,
|
| 510 |
-
"student_accuracy": 0.34375,
|
| 511 |
-
"student_approach_length": 500.0,
|
| 512 |
-
"teaching_length_mean": 2833.75,
|
| 513 |
-
"teaching_length_std": 883.8529811162587,
|
| 514 |
-
"token_efficiency": 0.0154971457828618
|
| 515 |
-
},
|
| 516 |
-
{
|
| 517 |
-
"accuracy_delta": 0.09375,
|
| 518 |
-
"baseline_accuracy": 0.09375,
|
| 519 |
-
"completion_length": 2996.8203125,
|
| 520 |
-
"degradation_rate": 0.0625,
|
| 521 |
-
"epoch": 0.13071895424836602,
|
| 522 |
-
"grad_norm": 1.0366727211421645,
|
| 523 |
-
"improvement_rate": 0.15625,
|
| 524 |
-
"kl": 0.002071857452392578,
|
| 525 |
-
"learning_rate": 2e-06,
|
| 526 |
-
"loss": 0.0001,
|
| 527 |
-
"reward": 0.10002126544713974,
|
| 528 |
-
"reward_std": 0.12362907081842422,
|
| 529 |
-
"rewards/AdaptiveTeachingReward": 0.10002126544713974,
|
| 530 |
-
"step": 25,
|
| 531 |
-
"student_accuracy": 0.1875,
|
| 532 |
-
"student_approach_length": 500.0,
|
| 533 |
-
"teaching_length_mean": 2241.40625,
|
| 534 |
-
"teaching_length_std": 1680.2583046873353,
|
| 535 |
-
"token_efficiency": 0.005314979233325259
|
| 536 |
-
},
|
| 537 |
-
{
|
| 538 |
-
"accuracy_delta": 0.03125,
|
| 539 |
-
"baseline_accuracy": 0.125,
|
| 540 |
-
"completion_length": 2699.5078125,
|
| 541 |
-
"degradation_rate": 0.125,
|
| 542 |
-
"epoch": 0.13594771241830064,
|
| 543 |
-
"grad_norm": 0.8849958564728577,
|
| 544 |
-
"improvement_rate": 0.15625,
|
| 545 |
-
"kl": 0.00244140625,
|
| 546 |
-
"learning_rate": 2e-06,
|
| 547 |
-
"loss": 0.0001,
|
| 548 |
-
"reward": 0.21003766357898712,
|
| 549 |
-
"reward_std": 0.27024491131305695,
|
| 550 |
-
"rewards/AdaptiveTeachingReward": 0.21003766357898712,
|
| 551 |
-
"step": 26,
|
| 552 |
-
"student_accuracy": 0.15625,
|
| 553 |
-
"student_approach_length": 500.0,
|
| 554 |
-
"teaching_length_mean": 2865.75,
|
| 555 |
-
"teaching_length_std": 1575.6950824020187,
|
| 556 |
-
"token_efficiency": 0.00747702067329278
|
| 557 |
-
},
|
| 558 |
-
{
|
| 559 |
-
"accuracy_delta": 0.09375,
|
| 560 |
-
"baseline_accuracy": 0.0,
|
| 561 |
-
"completion_length": 2216.78125,
|
| 562 |
-
"degradation_rate": 0.0,
|
| 563 |
-
"epoch": 0.1411764705882353,
|
| 564 |
-
"grad_norm": 0.6451950468247998,
|
| 565 |
-
"improvement_rate": 0.09375,
|
| 566 |
-
"kl": 0.0021767616271972656,
|
| 567 |
-
"learning_rate": 2e-06,
|
| 568 |
-
"loss": 0.0001,
|
| 569 |
-
"reward": 0.2089657336473465,
|
| 570 |
-
"reward_std": 0.21514078974723816,
|
| 571 |
-
"rewards/AdaptiveTeachingReward": 0.2089657336473465,
|
| 572 |
-
"step": 27,
|
| 573 |
-
"student_accuracy": 0.09375,
|
| 574 |
-
"student_approach_length": 499.96875,
|
| 575 |
-
"teaching_length_mean": 2619.40625,
|
| 576 |
-
"teaching_length_std": 1265.4369118665845,
|
| 577 |
-
"token_efficiency": 0.0060904088353781515
|
| 578 |
-
},
|
| 579 |
-
{
|
| 580 |
-
"accuracy_delta": 0.0,
|
| 581 |
-
"baseline_accuracy": 0.0,
|
| 582 |
-
"completion_length": 2668.4140625,
|
| 583 |
-
"degradation_rate": 0.0,
|
| 584 |
-
"epoch": 0.14640522875816994,
|
| 585 |
-
"grad_norm": 0.7896767066978999,
|
| 586 |
-
"improvement_rate": 0.0,
|
| 587 |
-
"kl": 0.002083301544189453,
|
| 588 |
-
"learning_rate": 2e-06,
|
| 589 |
-
"loss": 0.0001,
|
| 590 |
-
"reward": 0.14528799057006836,
|
| 591 |
-
"reward_std": 0.09566954523324966,
|
| 592 |
-
"rewards/AdaptiveTeachingReward": 0.14528799057006836,
|
| 593 |
-
"step": 28,
|
| 594 |
-
"student_accuracy": 0.0,
|
| 595 |
-
"student_approach_length": 500.0,
|
| 596 |
-
"teaching_length_mean": 3113.90625,
|
| 597 |
-
"teaching_length_std": 884.9974614855895,
|
| 598 |
-
"token_efficiency": 0.0035470700822770596
|
| 599 |
-
},
|
| 600 |
-
{
|
| 601 |
-
"accuracy_delta": 0.03125,
|
| 602 |
-
"baseline_accuracy": 0.0,
|
| 603 |
-
"completion_length": 2467.4140625,
|
| 604 |
-
"degradation_rate": 0.0,
|
| 605 |
-
"epoch": 0.15163398692810456,
|
| 606 |
-
"grad_norm": 0.22872066233966626,
|
| 607 |
-
"improvement_rate": 0.03125,
|
| 608 |
-
"kl": 0.0025146007537841797,
|
| 609 |
-
"learning_rate": 2e-06,
|
| 610 |
-
"loss": 0.0001,
|
| 611 |
-
"reward": 0.007998689077794552,
|
| 612 |
-
"reward_std": 0.04524742066860199,
|
| 613 |
-
"rewards/AdaptiveTeachingReward": 0.007998689077794552,
|
| 614 |
-
"step": 29,
|
| 615 |
-
"student_accuracy": 0.03125,
|
| 616 |
-
"student_approach_length": 500.0,
|
| 617 |
-
"teaching_length_mean": 2764.9375,
|
| 618 |
-
"teaching_length_std": 1560.6896673437209,
|
| 619 |
-
"token_efficiency": 0.0002591402932910396
|
| 620 |
-
},
|
| 621 |
-
{
|
| 622 |
-
"accuracy_delta": 0.0,
|
| 623 |
-
"baseline_accuracy": 0.0,
|
| 624 |
-
"completion_length": 2854.59375,
|
| 625 |
-
"degradation_rate": 0.0,
|
| 626 |
-
"epoch": 0.1568627450980392,
|
| 627 |
-
"grad_norm": 0.5744778046050318,
|
| 628 |
-
"improvement_rate": 0.0,
|
| 629 |
-
"kl": 0.0022513866424560547,
|
| 630 |
-
"learning_rate": 2e-06,
|
| 631 |
-
"loss": 0.0001,
|
| 632 |
-
"reward": 0.16005077958106995,
|
| 633 |
-
"reward_std": 0.10021104663610458,
|
| 634 |
-
"rewards/AdaptiveTeachingReward": 0.16005077958106995,
|
| 635 |
-
"step": 30,
|
| 636 |
-
"student_accuracy": 0.0,
|
| 637 |
-
"student_approach_length": 500.0,
|
| 638 |
-
"teaching_length_mean": 2139.71875,
|
| 639 |
-
"teaching_length_std": 1711.9645016733543,
|
| 640 |
-
"token_efficiency": 0.007949871083127776
|
| 641 |
-
}
|
| 642 |
-
],
|
| 643 |
-
"logging_steps": 1,
|
| 644 |
-
"max_steps": 250,
|
| 645 |
-
"num_input_tokens_seen": 0,
|
| 646 |
-
"num_train_epochs": 2,
|
| 647 |
-
"save_steps": 10,
|
| 648 |
-
"stateful_callbacks": {
|
| 649 |
-
"TrainerControl": {
|
| 650 |
-
"args": {
|
| 651 |
-
"should_epoch_stop": false,
|
| 652 |
-
"should_evaluate": false,
|
| 653 |
-
"should_log": false,
|
| 654 |
-
"should_save": true,
|
| 655 |
-
"should_training_stop": false
|
| 656 |
-
},
|
| 657 |
-
"attributes": {}
|
| 658 |
-
}
|
| 659 |
-
},
|
| 660 |
-
"total_flos": 0.0,
|
| 661 |
-
"train_batch_size": 16,
|
| 662 |
-
"trial_name": null,
|
| 663 |
-
"trial_params": null
|
| 664 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/training_args.bin
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:fb102755f6a8032c8da7daf88cca9336f93aa1768d8d06988bb3559ee06587f7
|
| 3 |
-
size 129
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint/vocab.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint/zero_to_fp32.py
DELETED
|
@@ -1,674 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python
|
| 2 |
-
|
| 3 |
-
# Copyright (c) Microsoft Corporation.
|
| 4 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
-
|
| 6 |
-
# DeepSpeed Team
|
| 7 |
-
|
| 8 |
-
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
-
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
-
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
-
# application.
|
| 12 |
-
#
|
| 13 |
-
# example:
|
| 14 |
-
# python zero_to_fp32.py . output_dir/
|
| 15 |
-
# or
|
| 16 |
-
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
-
|
| 18 |
-
import argparse
|
| 19 |
-
import torch
|
| 20 |
-
import glob
|
| 21 |
-
import math
|
| 22 |
-
import os
|
| 23 |
-
import re
|
| 24 |
-
import json
|
| 25 |
-
from tqdm import tqdm
|
| 26 |
-
from collections import OrderedDict
|
| 27 |
-
from dataclasses import dataclass
|
| 28 |
-
|
| 29 |
-
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
-
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
-
from deepspeed.utils import logger
|
| 32 |
-
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
-
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
-
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
@dataclass
|
| 38 |
-
class zero_model_state:
|
| 39 |
-
buffers: dict()
|
| 40 |
-
param_shapes: dict()
|
| 41 |
-
shared_params: list
|
| 42 |
-
ds_version: int
|
| 43 |
-
frozen_param_shapes: dict()
|
| 44 |
-
frozen_param_fragments: dict()
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
debug = 0
|
| 48 |
-
|
| 49 |
-
# load to cpu
|
| 50 |
-
device = torch.device('cpu')
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
def atoi(text):
|
| 54 |
-
return int(text) if text.isdigit() else text
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
def natural_keys(text):
|
| 58 |
-
'''
|
| 59 |
-
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
-
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
-
(See Toothy's implementation in the comments)
|
| 62 |
-
'''
|
| 63 |
-
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
-
if not os.path.isdir(checkpoint_dir):
|
| 68 |
-
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
-
|
| 70 |
-
# there should be only one file
|
| 71 |
-
if zero_stage <= 2:
|
| 72 |
-
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
-
elif zero_stage == 3:
|
| 74 |
-
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
-
|
| 76 |
-
if not os.path.exists(file):
|
| 77 |
-
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
-
|
| 79 |
-
return file
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
-
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
-
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
-
|
| 86 |
-
if len(ckpt_files) == 0:
|
| 87 |
-
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
-
|
| 89 |
-
return ckpt_files
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
def get_optim_files(checkpoint_dir):
|
| 93 |
-
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
def get_model_state_files(checkpoint_dir):
|
| 97 |
-
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
def parse_model_states(files):
|
| 101 |
-
zero_model_states = []
|
| 102 |
-
for file in files:
|
| 103 |
-
state_dict = torch.load(file, map_location=device)
|
| 104 |
-
|
| 105 |
-
if BUFFER_NAMES not in state_dict:
|
| 106 |
-
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
-
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
-
if debug:
|
| 109 |
-
print("Found buffers:", buffer_names)
|
| 110 |
-
|
| 111 |
-
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
-
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
-
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
-
|
| 115 |
-
# collect parameters that are included in param_shapes
|
| 116 |
-
param_names = []
|
| 117 |
-
for s in param_shapes:
|
| 118 |
-
for name in s.keys():
|
| 119 |
-
param_names.append(name)
|
| 120 |
-
|
| 121 |
-
# update with frozen parameters
|
| 122 |
-
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
-
if frozen_param_shapes is not None:
|
| 124 |
-
if debug:
|
| 125 |
-
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
-
param_names += list(frozen_param_shapes.keys())
|
| 127 |
-
|
| 128 |
-
# handle shared params
|
| 129 |
-
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
-
|
| 131 |
-
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
-
|
| 133 |
-
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
-
|
| 135 |
-
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
-
param_shapes=param_shapes,
|
| 137 |
-
shared_params=shared_params,
|
| 138 |
-
ds_version=ds_version,
|
| 139 |
-
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
-
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
-
zero_model_states.append(z_model_state)
|
| 142 |
-
|
| 143 |
-
return zero_model_states
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
-
total_files = len(files)
|
| 148 |
-
state_dicts = []
|
| 149 |
-
for f in files:
|
| 150 |
-
state_dict = torch.load(f, map_location=device)
|
| 151 |
-
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
-
# and also handle the case where it was already removed by another helper script
|
| 153 |
-
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
-
state_dicts.append(state_dict)
|
| 155 |
-
|
| 156 |
-
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
-
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
-
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
-
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
-
|
| 161 |
-
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
-
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
-
# use the max of the partition_count to get the dp world_size.
|
| 164 |
-
|
| 165 |
-
if type(world_size) is list:
|
| 166 |
-
world_size = max(world_size)
|
| 167 |
-
|
| 168 |
-
if world_size != total_files:
|
| 169 |
-
raise ValueError(
|
| 170 |
-
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
-
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
-
)
|
| 173 |
-
|
| 174 |
-
# the groups are named differently in each stage
|
| 175 |
-
if zero_stage <= 2:
|
| 176 |
-
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
-
elif zero_stage == 3:
|
| 178 |
-
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
-
else:
|
| 180 |
-
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
-
|
| 182 |
-
if zero_stage <= 2:
|
| 183 |
-
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
-
elif zero_stage == 3:
|
| 185 |
-
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
-
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
-
#
|
| 188 |
-
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
-
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
-
|
| 191 |
-
fp32_flat_groups = [
|
| 192 |
-
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
-
]
|
| 194 |
-
|
| 195 |
-
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
-
"""
|
| 200 |
-
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
-
|
| 202 |
-
Args:
|
| 203 |
-
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
-
|
| 205 |
-
"""
|
| 206 |
-
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
-
|
| 208 |
-
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
-
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
-
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
-
|
| 212 |
-
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
-
|
| 214 |
-
zero_model_states = parse_model_states(model_files)
|
| 215 |
-
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
-
|
| 217 |
-
if zero_stage <= 2:
|
| 218 |
-
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
-
exclude_frozen_parameters)
|
| 220 |
-
elif zero_stage == 3:
|
| 221 |
-
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
-
exclude_frozen_parameters)
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
-
return
|
| 228 |
-
|
| 229 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
-
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
-
|
| 232 |
-
if debug:
|
| 233 |
-
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
-
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
-
|
| 236 |
-
wanted_params = len(frozen_param_shapes)
|
| 237 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
-
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
-
|
| 242 |
-
total_params = 0
|
| 243 |
-
total_numel = 0
|
| 244 |
-
for name, shape in frozen_param_shapes.items():
|
| 245 |
-
total_params += 1
|
| 246 |
-
unpartitioned_numel = shape.numel()
|
| 247 |
-
total_numel += unpartitioned_numel
|
| 248 |
-
|
| 249 |
-
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
-
|
| 251 |
-
if debug:
|
| 252 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
-
|
| 254 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
def _has_callable(obj, fn):
|
| 258 |
-
attr = getattr(obj, fn, None)
|
| 259 |
-
return callable(attr)
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
-
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
-
|
| 265 |
-
# Reconstruction protocol:
|
| 266 |
-
#
|
| 267 |
-
# XXX: document this
|
| 268 |
-
|
| 269 |
-
if debug:
|
| 270 |
-
for i in range(world_size):
|
| 271 |
-
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
-
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
-
|
| 274 |
-
# XXX: memory usage doubles here (zero2)
|
| 275 |
-
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
-
merged_single_partition_of_fp32_groups = []
|
| 277 |
-
for i in range(num_param_groups):
|
| 278 |
-
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
-
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
-
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
-
avail_numel = sum(
|
| 282 |
-
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
-
|
| 284 |
-
if debug:
|
| 285 |
-
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
-
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
-
# not asserting if there is a mismatch due to possible padding
|
| 288 |
-
print(f"Have {avail_numel} numels to process.")
|
| 289 |
-
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
-
|
| 291 |
-
# params
|
| 292 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
-
# out-of-core computing solution
|
| 294 |
-
total_numel = 0
|
| 295 |
-
total_params = 0
|
| 296 |
-
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
-
offset = 0
|
| 298 |
-
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
-
for name, shape in shapes.items():
|
| 300 |
-
|
| 301 |
-
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
-
total_numel += unpartitioned_numel
|
| 303 |
-
total_params += 1
|
| 304 |
-
|
| 305 |
-
if debug:
|
| 306 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
-
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
-
offset += unpartitioned_numel
|
| 309 |
-
|
| 310 |
-
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
-
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
-
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
-
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
-
align_to = 2 * world_size
|
| 315 |
-
|
| 316 |
-
def zero2_align(x):
|
| 317 |
-
return align_to * math.ceil(x / align_to)
|
| 318 |
-
|
| 319 |
-
if debug:
|
| 320 |
-
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
-
|
| 322 |
-
offset = zero2_align(offset)
|
| 323 |
-
avail_numel = zero2_align(avail_numel)
|
| 324 |
-
|
| 325 |
-
if debug:
|
| 326 |
-
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
-
|
| 328 |
-
# Sanity check
|
| 329 |
-
if offset != avail_numel:
|
| 330 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
-
|
| 332 |
-
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
-
exclude_frozen_parameters):
|
| 337 |
-
state_dict = OrderedDict()
|
| 338 |
-
|
| 339 |
-
# buffers
|
| 340 |
-
buffers = zero_model_states[0].buffers
|
| 341 |
-
state_dict.update(buffers)
|
| 342 |
-
if debug:
|
| 343 |
-
print(f"added {len(buffers)} buffers")
|
| 344 |
-
|
| 345 |
-
if not exclude_frozen_parameters:
|
| 346 |
-
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
-
|
| 348 |
-
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
-
|
| 350 |
-
# recover shared parameters
|
| 351 |
-
for pair in zero_model_states[0].shared_params:
|
| 352 |
-
if pair[1] in state_dict:
|
| 353 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
-
|
| 355 |
-
return state_dict
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
-
remainder = unpartitioned_numel % world_size
|
| 360 |
-
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
-
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
-
return partitioned_numel, padding_numel
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
-
return
|
| 368 |
-
|
| 369 |
-
if debug:
|
| 370 |
-
for i in range(world_size):
|
| 371 |
-
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
-
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
-
|
| 374 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
-
wanted_params = len(frozen_param_shapes)
|
| 376 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
-
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
-
|
| 381 |
-
total_params = 0
|
| 382 |
-
total_numel = 0
|
| 383 |
-
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
-
total_params += 1
|
| 385 |
-
unpartitioned_numel = shape.numel()
|
| 386 |
-
total_numel += unpartitioned_numel
|
| 387 |
-
|
| 388 |
-
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
-
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
-
|
| 391 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
-
|
| 393 |
-
if debug:
|
| 394 |
-
print(
|
| 395 |
-
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
-
)
|
| 397 |
-
|
| 398 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
-
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
-
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
-
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
-
|
| 407 |
-
# merge list of dicts, preserving order
|
| 408 |
-
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
-
|
| 410 |
-
if debug:
|
| 411 |
-
for i in range(world_size):
|
| 412 |
-
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
-
|
| 414 |
-
wanted_params = len(param_shapes)
|
| 415 |
-
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
-
# not asserting if there is a mismatch due to possible padding
|
| 417 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
-
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
-
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
-
|
| 421 |
-
# params
|
| 422 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
-
# out-of-core computing solution
|
| 424 |
-
offset = 0
|
| 425 |
-
total_numel = 0
|
| 426 |
-
total_params = 0
|
| 427 |
-
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
-
unpartitioned_numel = shape.numel()
|
| 429 |
-
total_numel += unpartitioned_numel
|
| 430 |
-
total_params += 1
|
| 431 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
-
|
| 433 |
-
if debug:
|
| 434 |
-
print(
|
| 435 |
-
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
-
)
|
| 437 |
-
|
| 438 |
-
# XXX: memory usage doubles here
|
| 439 |
-
state_dict[name] = torch.cat(
|
| 440 |
-
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
-
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
-
offset += partitioned_numel
|
| 443 |
-
|
| 444 |
-
offset *= world_size
|
| 445 |
-
|
| 446 |
-
# Sanity check
|
| 447 |
-
if offset != avail_numel:
|
| 448 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
-
|
| 450 |
-
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
-
exclude_frozen_parameters):
|
| 455 |
-
state_dict = OrderedDict()
|
| 456 |
-
|
| 457 |
-
# buffers
|
| 458 |
-
buffers = zero_model_states[0].buffers
|
| 459 |
-
state_dict.update(buffers)
|
| 460 |
-
if debug:
|
| 461 |
-
print(f"added {len(buffers)} buffers")
|
| 462 |
-
|
| 463 |
-
if not exclude_frozen_parameters:
|
| 464 |
-
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
-
|
| 466 |
-
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
-
|
| 468 |
-
# recover shared parameters
|
| 469 |
-
for pair in zero_model_states[0].shared_params:
|
| 470 |
-
if pair[1] in state_dict:
|
| 471 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
-
|
| 473 |
-
return state_dict
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
-
"""
|
| 478 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
-
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
-
via a model hub.
|
| 481 |
-
|
| 482 |
-
Args:
|
| 483 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
-
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
-
|
| 487 |
-
Returns:
|
| 488 |
-
- pytorch ``state_dict``
|
| 489 |
-
|
| 490 |
-
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
-
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
-
the checkpoint.
|
| 493 |
-
|
| 494 |
-
A typical usage might be ::
|
| 495 |
-
|
| 496 |
-
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
-
# do the training and checkpoint saving
|
| 498 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
-
model = model.cpu() # move to cpu
|
| 500 |
-
model.load_state_dict(state_dict)
|
| 501 |
-
# submit to model hub or save the model to share with others
|
| 502 |
-
|
| 503 |
-
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
-
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
-
|
| 507 |
-
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
-
|
| 509 |
-
"""
|
| 510 |
-
if tag is None:
|
| 511 |
-
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
-
if os.path.isfile(latest_path):
|
| 513 |
-
with open(latest_path, 'r') as fd:
|
| 514 |
-
tag = fd.read().strip()
|
| 515 |
-
else:
|
| 516 |
-
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
-
|
| 518 |
-
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
-
|
| 520 |
-
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
-
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
-
|
| 523 |
-
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
-
output_dir,
|
| 528 |
-
max_shard_size="5GB",
|
| 529 |
-
safe_serialization=False,
|
| 530 |
-
tag=None,
|
| 531 |
-
exclude_frozen_parameters=False):
|
| 532 |
-
"""
|
| 533 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
-
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
-
|
| 536 |
-
Args:
|
| 537 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
-
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
-
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
-
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
-
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
-
"""
|
| 544 |
-
# Dependency pre-check
|
| 545 |
-
if safe_serialization:
|
| 546 |
-
try:
|
| 547 |
-
from safetensors.torch import save_file
|
| 548 |
-
except ImportError:
|
| 549 |
-
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
-
raise
|
| 551 |
-
if max_shard_size is not None:
|
| 552 |
-
try:
|
| 553 |
-
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
-
except ImportError:
|
| 555 |
-
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
-
raise
|
| 557 |
-
|
| 558 |
-
# Convert zero checkpoint to state_dict
|
| 559 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
-
|
| 561 |
-
# Shard the model if it is too big.
|
| 562 |
-
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
-
if max_shard_size is not None:
|
| 564 |
-
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
-
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
-
filename_pattern=filename_pattern,
|
| 567 |
-
max_shard_size=max_shard_size)
|
| 568 |
-
else:
|
| 569 |
-
from collections import namedtuple
|
| 570 |
-
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
-
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
-
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
-
|
| 574 |
-
# Save the model
|
| 575 |
-
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
-
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
-
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
-
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
-
if safe_serialization:
|
| 580 |
-
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
-
else:
|
| 582 |
-
torch.save(shard, output_path)
|
| 583 |
-
|
| 584 |
-
# Save index if sharded
|
| 585 |
-
if state_dict_split.is_sharded:
|
| 586 |
-
index = {
|
| 587 |
-
"metadata": state_dict_split.metadata,
|
| 588 |
-
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
-
}
|
| 590 |
-
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
-
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
-
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
-
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
-
f.write(content)
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
-
"""
|
| 599 |
-
1. Put the provided model to cpu
|
| 600 |
-
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
-
3. Load it into the provided model
|
| 602 |
-
|
| 603 |
-
Args:
|
| 604 |
-
- ``model``: the model object to update
|
| 605 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
-
|
| 608 |
-
Returns:
|
| 609 |
-
- ``model`: modified model
|
| 610 |
-
|
| 611 |
-
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
-
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
-
conveniently placed for you in the checkpoint folder.
|
| 614 |
-
|
| 615 |
-
A typical usage might be ::
|
| 616 |
-
|
| 617 |
-
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
-
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
-
# submit to model hub or save the model to share with others
|
| 620 |
-
|
| 621 |
-
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
-
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
-
|
| 625 |
-
"""
|
| 626 |
-
logger.info(f"Extracting fp32 weights")
|
| 627 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
-
|
| 629 |
-
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
-
model = model.cpu()
|
| 631 |
-
model.load_state_dict(state_dict, strict=False)
|
| 632 |
-
|
| 633 |
-
return model
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
if __name__ == "__main__":
|
| 637 |
-
parser = argparse.ArgumentParser()
|
| 638 |
-
parser.add_argument("checkpoint_dir",
|
| 639 |
-
type=str,
|
| 640 |
-
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
-
parser.add_argument("output_dir",
|
| 642 |
-
type=str,
|
| 643 |
-
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
-
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
-
parser.add_argument(
|
| 646 |
-
"--max_shard_size",
|
| 647 |
-
type=str,
|
| 648 |
-
default="5GB",
|
| 649 |
-
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
-
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
-
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
-
"without CPU OOM issues.")
|
| 653 |
-
parser.add_argument(
|
| 654 |
-
"--safe_serialization",
|
| 655 |
-
default=False,
|
| 656 |
-
action='store_true',
|
| 657 |
-
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
-
parser.add_argument("-t",
|
| 659 |
-
"--tag",
|
| 660 |
-
type=str,
|
| 661 |
-
default=None,
|
| 662 |
-
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
-
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
-
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
-
args = parser.parse_args()
|
| 666 |
-
|
| 667 |
-
debug = args.debug
|
| 668 |
-
|
| 669 |
-
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
-
args.output_dir,
|
| 671 |
-
max_shard_size=args.max_shard_size,
|
| 672 |
-
safe_serialization=args.safe_serialization,
|
| 673 |
-
tag=args.tag,
|
| 674 |
-
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|