aman-jaglan commited on
Commit
cb1fcf3
·
verified ·
1 Parent(s): b83c326

delete checkpoint

Browse files
checkpoint/added_tokens.json DELETED
@@ -1,28 +0,0 @@
1
- {
2
- "</think>": 151668,
3
- "</tool_call>": 151658,
4
- "</tool_response>": 151666,
5
- "<think>": 151667,
6
- "<tool_call>": 151657,
7
- "<tool_response>": 151665,
8
- "<|box_end|>": 151649,
9
- "<|box_start|>": 151648,
10
- "<|endoftext|>": 151643,
11
- "<|file_sep|>": 151664,
12
- "<|fim_middle|>": 151660,
13
- "<|fim_pad|>": 151662,
14
- "<|fim_prefix|>": 151659,
15
- "<|fim_suffix|>": 151661,
16
- "<|im_end|>": 151645,
17
- "<|im_start|>": 151644,
18
- "<|image_pad|>": 151655,
19
- "<|object_ref_end|>": 151647,
20
- "<|object_ref_start|>": 151646,
21
- "<|quad_end|>": 151651,
22
- "<|quad_start|>": 151650,
23
- "<|repo_name|>": 151663,
24
- "<|video_pad|>": 151656,
25
- "<|vision_end|>": 151653,
26
- "<|vision_pad|>": 151654,
27
- "<|vision_start|>": 151652
28
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint/config.json DELETED
@@ -1,30 +0,0 @@
1
- {
2
- "architectures": [
3
- "Qwen3ForCausalLM"
4
- ],
5
- "attention_bias": false,
6
- "attention_dropout": 0.0,
7
- "bos_token_id": 151643,
8
- "eos_token_id": 151645,
9
- "head_dim": 128,
10
- "hidden_act": "silu",
11
- "hidden_size": 4096,
12
- "initializer_range": 0.02,
13
- "intermediate_size": 12288,
14
- "max_position_embeddings": 40960,
15
- "max_window_layers": 36,
16
- "model_type": "qwen3",
17
- "num_attention_heads": 32,
18
- "num_hidden_layers": 36,
19
- "num_key_value_heads": 8,
20
- "rms_norm_eps": 1e-06,
21
- "rope_scaling": null,
22
- "rope_theta": 1000000,
23
- "sliding_window": null,
24
- "tie_word_embeddings": false,
25
- "torch_dtype": "bfloat16",
26
- "transformers_version": "4.51.1",
27
- "use_cache": false,
28
- "use_sliding_window": false,
29
- "vocab_size": 151936
30
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint/generation_config.json DELETED
@@ -1,13 +0,0 @@
1
- {
2
- "bos_token_id": 151643,
3
- "do_sample": true,
4
- "eos_token_id": [
5
- 151645,
6
- 151643
7
- ],
8
- "pad_token_id": 151643,
9
- "temperature": 0.6,
10
- "top_k": 20,
11
- "top_p": 0.95,
12
- "transformers_version": "4.51.1"
13
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint/global_step/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f5f4f4b79ff32506ab32906080af95d79b9ef1967e42bf55fac6194cb1c74dd0
3
- size 136
 
 
 
 
checkpoint/global_step/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:734f86a747fe8100233d07aadf7aa0e2f5475d018c939c2fb35932a55399da80
3
- size 136
 
 
 
 
checkpoint/global_step/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d69239f0d6cbccf4515dadc6023e2c1d708e803b4f676645f239b4f401d76fae
3
- size 136
 
 
 
 
checkpoint/global_step/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:10be5af584d25f6ecb8ece3884cb34cee90cb7c11a2bde2d32a0119bea301d9e
3
- size 136
 
 
 
 
checkpoint/global_step/zero_pp_rank_0_mp_rank_00_model_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:12c2be50cb7ab0c660dc53a2180d2036facdee649f7cc657e70a1f5f3b3b49af
3
- size 131
 
 
 
 
checkpoint/global_step/zero_pp_rank_1_mp_rank_00_model_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d6406fa226ac5e40e48d8dcb70712e62c2dba1220aa100b5e9dd31301ac548b8
3
- size 131
 
 
 
 
checkpoint/global_step/zero_pp_rank_2_mp_rank_00_model_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4747bd7a8e882aed290e815eef6be5113537e8b99284aaf61ffe24b55402a55b
3
- size 131
 
 
 
 
checkpoint/global_step/zero_pp_rank_3_mp_rank_00_model_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e0ebc844de0e4adc15fe26d906efb231737f5460eb4467028e6e495a92a725a2
3
- size 131
 
 
 
 
checkpoint/latest DELETED
@@ -1 +0,0 @@
1
- global_step30
 
 
checkpoint/merges.txt DELETED
The diff for this file is too large to render. See raw diff
 
checkpoint/model-00001-of-00004.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f7c902e5249e8cffa657fca39c1f1235ae0e40cfbdf54fa21b496350ac7e3e1c
3
- size 135
 
 
 
 
checkpoint/model-00002-of-00004.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:73cec5175b48a2873e56ddd88addafe391d27c09f37ca000b9b1426c524c3e5e
3
- size 135
 
 
 
 
checkpoint/model-00003-of-00004.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5b7f159391827175ff75e3f87597befd1cc41fb8f698e9a73396025fedb2454c
3
- size 135
 
 
 
 
checkpoint/model-00004-of-00004.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:324a90d05ec6403957185cd43f83bdd8731ffab4e34c5a47799f7b22403c019e
3
- size 135
 
 
 
 
checkpoint/model.safetensors.index.json DELETED
@@ -1,406 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 16381470720
4
- },
5
- "weight_map": {
6
- "lm_head.weight": "model-00004-of-00004.safetensors",
7
- "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
- "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
- "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
- "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
- "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
- "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
- "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
14
- "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
- "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
- "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
17
- "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
- "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
19
- "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
20
- "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
21
- "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
22
- "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
23
- "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
24
- "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
25
- "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
26
- "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
27
- "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
28
- "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
29
- "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
30
- "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
31
- "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
32
- "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
33
- "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
34
- "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
35
- "model.layers.10.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
36
- "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
37
- "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
38
- "model.layers.10.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
39
- "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
40
- "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
41
- "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
42
- "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
43
- "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
44
- "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
45
- "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
46
- "model.layers.11.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
47
- "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
48
- "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
49
- "model.layers.11.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
50
- "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
51
- "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
52
- "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
53
- "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
54
- "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
55
- "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
56
- "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
57
- "model.layers.12.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
58
- "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
- "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
- "model.layers.12.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
61
- "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
62
- "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
63
- "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
64
- "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
65
- "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
66
- "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
67
- "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
68
- "model.layers.13.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
69
- "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
70
- "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
71
- "model.layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
72
- "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
73
- "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
74
- "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
75
- "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
76
- "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
77
- "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
78
- "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
79
- "model.layers.14.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
80
- "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
81
- "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
82
- "model.layers.14.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
83
- "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
84
- "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
85
- "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
86
- "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
87
- "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
88
- "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
89
- "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
90
- "model.layers.15.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
91
- "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
92
- "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
93
- "model.layers.15.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
94
- "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
95
- "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
96
- "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
97
- "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
98
- "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
99
- "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
100
- "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
101
- "model.layers.16.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
102
- "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
103
- "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
104
- "model.layers.16.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
105
- "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
- "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
- "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
108
- "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
109
- "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
- "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
- "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
112
- "model.layers.17.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
113
- "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
114
- "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
115
- "model.layers.17.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
116
- "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
117
- "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
118
- "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
119
- "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
120
- "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
121
- "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
122
- "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
123
- "model.layers.18.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
124
- "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
125
- "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
126
- "model.layers.18.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
127
- "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
128
- "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
129
- "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
130
- "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
131
- "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
132
- "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
133
- "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
134
- "model.layers.19.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
135
- "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
136
- "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
137
- "model.layers.19.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
138
- "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
139
- "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
- "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
141
- "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
142
- "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
143
- "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
144
- "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
145
- "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
146
- "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
147
- "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
148
- "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
149
- "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
150
- "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
151
- "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
152
- "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
153
- "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
154
- "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
155
- "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
156
- "model.layers.20.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
157
- "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
158
- "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
159
- "model.layers.20.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
160
- "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
161
- "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
162
- "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
163
- "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
164
- "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
165
- "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
166
- "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
167
- "model.layers.21.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
168
- "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
169
- "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
170
- "model.layers.21.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
171
- "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
172
- "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
173
- "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
174
- "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
175
- "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
176
- "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
177
- "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
178
- "model.layers.22.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
179
- "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
180
- "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
181
- "model.layers.22.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
182
- "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
183
- "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
184
- "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
185
- "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
186
- "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
187
- "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
188
- "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
189
- "model.layers.23.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
190
- "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
191
- "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
192
- "model.layers.23.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
193
- "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
194
- "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
195
- "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
196
- "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
197
- "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
198
- "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
199
- "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
200
- "model.layers.24.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
201
- "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
202
- "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
203
- "model.layers.24.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
204
- "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
- "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
- "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
- "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
- "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
- "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
- "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
- "model.layers.25.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
212
- "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
213
- "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
214
- "model.layers.25.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
215
- "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
216
- "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
217
- "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
218
- "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
219
- "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
220
- "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
221
- "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
222
- "model.layers.26.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
223
- "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
224
- "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
225
- "model.layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
226
- "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
227
- "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
228
- "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
229
- "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
230
- "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
231
- "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
232
- "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
233
- "model.layers.27.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
234
- "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
235
- "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
236
- "model.layers.27.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
237
- "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
238
- "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
239
- "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
240
- "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
241
- "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
242
- "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
243
- "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
244
- "model.layers.28.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
245
- "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
246
- "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
247
- "model.layers.28.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
248
- "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
249
- "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
250
- "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
251
- "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
252
- "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
253
- "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
254
- "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
255
- "model.layers.29.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
256
- "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
257
- "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
258
- "model.layers.29.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
259
- "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
260
- "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
261
- "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
262
- "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
263
- "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
264
- "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
265
- "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
266
- "model.layers.3.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
267
- "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
268
- "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
269
- "model.layers.3.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
270
- "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
271
- "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
- "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
273
- "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
274
- "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
275
- "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
276
- "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
277
- "model.layers.30.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
278
- "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
279
- "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
280
- "model.layers.30.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
281
- "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
282
- "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
283
- "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
284
- "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
285
- "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
286
- "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
287
- "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
288
- "model.layers.31.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
289
- "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
290
- "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
291
- "model.layers.31.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
292
- "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
293
- "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
294
- "model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
295
- "model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
296
- "model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
297
- "model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
298
- "model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
299
- "model.layers.32.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
300
- "model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
301
- "model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
302
- "model.layers.32.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
303
- "model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
304
- "model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
305
- "model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
306
- "model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
307
- "model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
308
- "model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
309
- "model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
310
- "model.layers.33.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
311
- "model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
312
- "model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
313
- "model.layers.33.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
314
- "model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
315
- "model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
316
- "model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
317
- "model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
318
- "model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
319
- "model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
320
- "model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
321
- "model.layers.34.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
322
- "model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
323
- "model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
324
- "model.layers.34.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
325
- "model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
326
- "model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
327
- "model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
328
- "model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
329
- "model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
330
- "model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
331
- "model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
332
- "model.layers.35.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
333
- "model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
334
- "model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
335
- "model.layers.35.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
336
- "model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
337
- "model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
338
- "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
339
- "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
340
- "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
341
- "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
342
- "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
343
- "model.layers.4.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
344
- "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
345
- "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
346
- "model.layers.4.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
347
- "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
348
- "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
349
- "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
350
- "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
351
- "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
352
- "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
353
- "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
354
- "model.layers.5.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
355
- "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
356
- "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
357
- "model.layers.5.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
358
- "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
359
- "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
360
- "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
361
- "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
362
- "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
363
- "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
364
- "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
365
- "model.layers.6.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
366
- "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
367
- "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
368
- "model.layers.6.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
369
- "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
370
- "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
371
- "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
372
- "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
373
- "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
374
- "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
375
- "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
376
- "model.layers.7.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
377
- "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
378
- "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
379
- "model.layers.7.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
380
- "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
381
- "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
382
- "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
383
- "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
384
- "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
385
- "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
386
- "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
387
- "model.layers.8.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
388
- "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
389
- "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
390
- "model.layers.8.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
391
- "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
392
- "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
393
- "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
394
- "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
395
- "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
396
- "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
397
- "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
398
- "model.layers.9.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
399
- "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
400
- "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
401
- "model.layers.9.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
402
- "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
403
- "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
404
- "model.norm.weight": "model-00004-of-00004.safetensors"
405
- }
406
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint/rng_state_0.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:258c1e2c3a63db2f51212e850765e60b7cb8b33f7d5e4e9159643ce8adc99656
3
- size 130
 
 
 
 
checkpoint/rng_state_1.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b63ba8e1dd2b548f83977d34f8a1552a67bc66ce33488c9733fcada5b45b62aa
3
- size 130
 
 
 
 
checkpoint/rng_state_2.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1a0ba59dfefd101ded99c7e9f8efbbe53ce9a0276a30cec53f6fb02c129d1e08
3
- size 130
 
 
 
 
checkpoint/rng_state_3.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:449bf3efd1254534866a15b011b5f515b7ed583db62d5b542cc09e02d0c247a6
3
- size 130
 
 
 
 
checkpoint/special_tokens_map.json DELETED
@@ -1,31 +0,0 @@
1
- {
2
- "additional_special_tokens": [
3
- "<|im_start|>",
4
- "<|im_end|>",
5
- "<|object_ref_start|>",
6
- "<|object_ref_end|>",
7
- "<|box_start|>",
8
- "<|box_end|>",
9
- "<|quad_start|>",
10
- "<|quad_end|>",
11
- "<|vision_start|>",
12
- "<|vision_end|>",
13
- "<|vision_pad|>",
14
- "<|image_pad|>",
15
- "<|video_pad|>"
16
- ],
17
- "eos_token": {
18
- "content": "<|im_end|>",
19
- "lstrip": false,
20
- "normalized": false,
21
- "rstrip": false,
22
- "single_word": false
23
- },
24
- "pad_token": {
25
- "content": "<|endoftext|>",
26
- "lstrip": false,
27
- "normalized": false,
28
- "rstrip": false,
29
- "single_word": false
30
- }
31
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint/tokenizer.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:67cc0080ffd7555f723f423c27cfef314e1ad9d335c8b79f465c5faba1ed478b
3
- size 11422821
 
 
 
 
checkpoint/tokenizer_config.json DELETED
@@ -1,245 +0,0 @@
1
- {
2
- "add_bos_token": false,
3
- "add_prefix_space": false,
4
- "added_tokens_decoder": {
5
- "151643": {
6
- "content": "<|endoftext|>",
7
- "lstrip": false,
8
- "normalized": false,
9
- "rstrip": false,
10
- "single_word": false,
11
- "special": true
12
- },
13
- "151644": {
14
- "content": "<|im_start|>",
15
- "lstrip": false,
16
- "normalized": false,
17
- "rstrip": false,
18
- "single_word": false,
19
- "special": true
20
- },
21
- "151645": {
22
- "content": "<|im_end|>",
23
- "lstrip": false,
24
- "normalized": false,
25
- "rstrip": false,
26
- "single_word": false,
27
- "special": true
28
- },
29
- "151646": {
30
- "content": "<|object_ref_start|>",
31
- "lstrip": false,
32
- "normalized": false,
33
- "rstrip": false,
34
- "single_word": false,
35
- "special": true
36
- },
37
- "151647": {
38
- "content": "<|object_ref_end|>",
39
- "lstrip": false,
40
- "normalized": false,
41
- "rstrip": false,
42
- "single_word": false,
43
- "special": true
44
- },
45
- "151648": {
46
- "content": "<|box_start|>",
47
- "lstrip": false,
48
- "normalized": false,
49
- "rstrip": false,
50
- "single_word": false,
51
- "special": true
52
- },
53
- "151649": {
54
- "content": "<|box_end|>",
55
- "lstrip": false,
56
- "normalized": false,
57
- "rstrip": false,
58
- "single_word": false,
59
- "special": true
60
- },
61
- "151650": {
62
- "content": "<|quad_start|>",
63
- "lstrip": false,
64
- "normalized": false,
65
- "rstrip": false,
66
- "single_word": false,
67
- "special": true
68
- },
69
- "151651": {
70
- "content": "<|quad_end|>",
71
- "lstrip": false,
72
- "normalized": false,
73
- "rstrip": false,
74
- "single_word": false,
75
- "special": true
76
- },
77
- "151652": {
78
- "content": "<|vision_start|>",
79
- "lstrip": false,
80
- "normalized": false,
81
- "rstrip": false,
82
- "single_word": false,
83
- "special": true
84
- },
85
- "151653": {
86
- "content": "<|vision_end|>",
87
- "lstrip": false,
88
- "normalized": false,
89
- "rstrip": false,
90
- "single_word": false,
91
- "special": true
92
- },
93
- "151654": {
94
- "content": "<|vision_pad|>",
95
- "lstrip": false,
96
- "normalized": false,
97
- "rstrip": false,
98
- "single_word": false,
99
- "special": true
100
- },
101
- "151655": {
102
- "content": "<|image_pad|>",
103
- "lstrip": false,
104
- "normalized": false,
105
- "rstrip": false,
106
- "single_word": false,
107
- "special": true
108
- },
109
- "151656": {
110
- "content": "<|video_pad|>",
111
- "lstrip": false,
112
- "normalized": false,
113
- "rstrip": false,
114
- "single_word": false,
115
- "special": true
116
- },
117
- "151657": {
118
- "content": "<tool_call>",
119
- "lstrip": false,
120
- "normalized": false,
121
- "rstrip": false,
122
- "single_word": false,
123
- "special": false
124
- },
125
- "151658": {
126
- "content": "</tool_call>",
127
- "lstrip": false,
128
- "normalized": false,
129
- "rstrip": false,
130
- "single_word": false,
131
- "special": false
132
- },
133
- "151659": {
134
- "content": "<|fim_prefix|>",
135
- "lstrip": false,
136
- "normalized": false,
137
- "rstrip": false,
138
- "single_word": false,
139
- "special": false
140
- },
141
- "151660": {
142
- "content": "<|fim_middle|>",
143
- "lstrip": false,
144
- "normalized": false,
145
- "rstrip": false,
146
- "single_word": false,
147
- "special": false
148
- },
149
- "151661": {
150
- "content": "<|fim_suffix|>",
151
- "lstrip": false,
152
- "normalized": false,
153
- "rstrip": false,
154
- "single_word": false,
155
- "special": false
156
- },
157
- "151662": {
158
- "content": "<|fim_pad|>",
159
- "lstrip": false,
160
- "normalized": false,
161
- "rstrip": false,
162
- "single_word": false,
163
- "special": false
164
- },
165
- "151663": {
166
- "content": "<|repo_name|>",
167
- "lstrip": false,
168
- "normalized": false,
169
- "rstrip": false,
170
- "single_word": false,
171
- "special": false
172
- },
173
- "151664": {
174
- "content": "<|file_sep|>",
175
- "lstrip": false,
176
- "normalized": false,
177
- "rstrip": false,
178
- "single_word": false,
179
- "special": false
180
- },
181
- "151665": {
182
- "content": "<tool_response>",
183
- "lstrip": false,
184
- "normalized": false,
185
- "rstrip": false,
186
- "single_word": false,
187
- "special": false
188
- },
189
- "151666": {
190
- "content": "</tool_response>",
191
- "lstrip": false,
192
- "normalized": false,
193
- "rstrip": false,
194
- "single_word": false,
195
- "special": false
196
- },
197
- "151667": {
198
- "content": "<think>",
199
- "lstrip": false,
200
- "normalized": false,
201
- "rstrip": false,
202
- "single_word": false,
203
- "special": false
204
- },
205
- "151668": {
206
- "content": "</think>",
207
- "lstrip": false,
208
- "normalized": false,
209
- "rstrip": false,
210
- "single_word": false,
211
- "special": false
212
- }
213
- },
214
- "additional_special_tokens": [
215
- "<|im_start|>",
216
- "<|im_end|>",
217
- "<|object_ref_start|>",
218
- "<|object_ref_end|>",
219
- "<|box_start|>",
220
- "<|box_end|>",
221
- "<|quad_start|>",
222
- "<|quad_end|>",
223
- "<|vision_start|>",
224
- "<|vision_end|>",
225
- "<|vision_pad|>",
226
- "<|image_pad|>",
227
- "<|video_pad|>"
228
- ],
229
- "bos_token": null,
230
- "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if message.content is string %}\n {%- set content = message.content %}\n {%- else %}\n {%- set content = '' %}\n {%- endif %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is string %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in content %}\n {%- set reasoning_content = content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- set content = content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
231
- "clean_up_tokenization_spaces": false,
232
- "eos_token": "<|im_end|>",
233
- "errors": "replace",
234
- "extra_special_tokens": {},
235
- "max_length": 16384,
236
- "model_max_length": 131072,
237
- "pad_token": "<|endoftext|>",
238
- "padding_side": "left",
239
- "split_special_tokens": false,
240
- "stride": 0,
241
- "tokenizer_class": "Qwen2Tokenizer",
242
- "truncation_side": "right",
243
- "truncation_strategy": "longest_first",
244
- "unk_token": null
245
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint/trainer_state.json DELETED
@@ -1,664 +0,0 @@
1
- {
2
- "best_global_step": null,
3
- "best_metric": null,
4
- "best_model_checkpoint": null,
5
- "epoch": 0.1568627450980392,
6
- "eval_steps": 500,
7
- "global_step": 30,
8
- "is_hyper_param_search": false,
9
- "is_local_process_zero": true,
10
- "is_world_process_zero": true,
11
- "log_history": [
12
- {
13
- "accuracy_delta": -0.03125,
14
- "baseline_accuracy": 0.5625,
15
- "completion_length": 1660.1953125,
16
- "degradation_rate": 0.1875,
17
- "epoch": 0.00522875816993464,
18
- "grad_norm": 1.8285036167620026,
19
- "improvement_rate": 0.15625,
20
- "kl": 0.0,
21
- "learning_rate": 2e-06,
22
- "loss": 0.0,
23
- "reward": 0.24004681408405304,
24
- "reward_std": 0.25635848194360733,
25
- "rewards/AdaptiveTeachingReward": 0.24004681408405304,
26
- "step": 1,
27
- "student_accuracy": 0.53125,
28
- "student_approach_length": 500.0,
29
- "teaching_length_mean": 1349.5,
30
- "teaching_length_std": 1533.2601122433693,
31
- "token_efficiency": 0.01778511088825826
32
- },
33
- {
34
- "accuracy_delta": -0.21875,
35
- "baseline_accuracy": 1.0,
36
- "completion_length": 2174.171875,
37
- "degradation_rate": 0.21875,
38
- "epoch": 0.01045751633986928,
39
- "grad_norm": 1.2225533588422857,
40
- "improvement_rate": 0.0,
41
- "kl": 0.002572178840637207,
42
- "learning_rate": 2e-06,
43
- "loss": 0.0001,
44
- "reward": 0.2656950503587723,
45
- "reward_std": 0.17467603832483292,
46
- "rewards/AdaptiveTeachingReward": 0.2656950503587723,
47
- "step": 2,
48
- "student_accuracy": 0.78125,
49
- "student_approach_length": 489.875,
50
- "teaching_length_mean": 1645.90625,
51
- "teaching_length_std": 1777.2254866782437,
52
- "token_efficiency": 0.016061369340544678
53
- },
54
- {
55
- "accuracy_delta": -0.0625,
56
- "baseline_accuracy": 0.0625,
57
- "completion_length": 2889.65625,
58
- "degradation_rate": 0.0625,
59
- "epoch": 0.01568627450980392,
60
- "grad_norm": 0.4912196165940296,
61
- "improvement_rate": 0.0,
62
- "kl": 0.0021309852600097656,
63
- "learning_rate": 2e-06,
64
- "loss": 0.0001,
65
- "reward": 0.1566198617219925,
66
- "reward_std": 0.17452973127365112,
67
- "rewards/AdaptiveTeachingReward": 0.1566198617219925,
68
- "step": 3,
69
- "student_accuracy": 0.0,
70
- "student_approach_length": 500.0,
71
- "teaching_length_mean": 3435.71875,
72
- "teaching_length_std": 874.6175996443687,
73
- "token_efficiency": 0.005029539554335019
74
- },
75
- {
76
- "accuracy_delta": 0.0,
77
- "baseline_accuracy": 0.0,
78
- "completion_length": 1765.4765625,
79
- "degradation_rate": 0.0,
80
- "epoch": 0.02091503267973856,
81
- "grad_norm": 0.014919439029800962,
82
- "improvement_rate": 0.0,
83
- "kl": 0.0024797916412353516,
84
- "learning_rate": 2e-06,
85
- "loss": 0.0001,
86
- "reward": 0.0,
87
- "reward_std": 0.0,
88
- "rewards/AdaptiveTeachingReward": 0.0,
89
- "step": 4,
90
- "student_accuracy": 0.0,
91
- "student_approach_length": 500.0,
92
- "teaching_length_mean": 1644.53125,
93
- "teaching_length_std": 1544.9233390329066,
94
- "token_efficiency": 0.0
95
- },
96
- {
97
- "accuracy_delta": 0.1875,
98
- "baseline_accuracy": 0.375,
99
- "completion_length": 2330.296875,
100
- "degradation_rate": 0.09375,
101
- "epoch": 0.026143790849673203,
102
- "grad_norm": 1.6480657403271404,
103
- "improvement_rate": 0.28125,
104
- "kl": 0.002542257308959961,
105
- "learning_rate": 2e-06,
106
- "loss": 0.0001,
107
- "reward": 0.293629452586174,
108
- "reward_std": 0.31043318659067154,
109
- "rewards/AdaptiveTeachingReward": 0.293629452586174,
110
- "step": 5,
111
- "student_accuracy": 0.5625,
112
- "student_approach_length": 500.0,
113
- "teaching_length_mean": 2543.6875,
114
- "teaching_length_std": 1157.76463240177,
115
- "token_efficiency": 0.015775285003662067
116
- },
117
- {
118
- "accuracy_delta": -0.125,
119
- "baseline_accuracy": 0.375,
120
- "completion_length": 2799.2265625,
121
- "degradation_rate": 0.21875,
122
- "epoch": 0.03137254901960784,
123
- "grad_norm": 1.3626772466174568,
124
- "improvement_rate": 0.09375,
125
- "kl": 0.0024237632751464844,
126
- "learning_rate": 2e-06,
127
- "loss": 0.0001,
128
- "reward": 0.297846183180809,
129
- "reward_std": 0.1792445182800293,
130
- "rewards/AdaptiveTeachingReward": 0.297846183180809,
131
- "step": 6,
132
- "student_accuracy": 0.25,
133
- "student_approach_length": 500.0,
134
- "teaching_length_mean": 3300.46875,
135
- "teaching_length_std": 1322.463354762313,
136
- "token_efficiency": 0.008984860526379333
137
- },
138
- {
139
- "accuracy_delta": 0.15625,
140
- "baseline_accuracy": 0.09375,
141
- "completion_length": 2839.59375,
142
- "degradation_rate": 0.0,
143
- "epoch": 0.036601307189542485,
144
- "grad_norm": 1.0148015671601693,
145
- "improvement_rate": 0.15625,
146
- "kl": 0.0022563934326171875,
147
- "learning_rate": 2e-06,
148
- "loss": 0.0001,
149
- "reward": 0.22244123369455338,
150
- "reward_std": 0.32708095014095306,
151
- "rewards/AdaptiveTeachingReward": 0.22244123369455338,
152
- "step": 7,
153
- "student_accuracy": 0.25,
154
- "student_approach_length": 500.0,
155
- "teaching_length_mean": 2663.28125,
156
- "teaching_length_std": 1263.471554191286,
157
- "token_efficiency": 0.009322577760442718
158
- },
159
- {
160
- "accuracy_delta": 0.03125,
161
- "baseline_accuracy": 0.34375,
162
- "completion_length": 2997.0234375,
163
- "degradation_rate": 0.0625,
164
- "epoch": 0.04183006535947712,
165
- "grad_norm": 1.0933058629769363,
166
- "improvement_rate": 0.09375,
167
- "kl": 0.00222015380859375,
168
- "learning_rate": 2e-06,
169
- "loss": 0.0001,
170
- "reward": 0.4145798534154892,
171
- "reward_std": 0.348370686173439,
172
- "rewards/AdaptiveTeachingReward": 0.4145798534154892,
173
- "step": 8,
174
- "student_accuracy": 0.375,
175
- "student_approach_length": 500.0,
176
- "teaching_length_mean": 2859.9375,
177
- "teaching_length_std": 1548.3925018635746,
178
- "token_efficiency": 0.014895284304358753
179
- },
180
- {
181
- "accuracy_delta": 0.0,
182
- "baseline_accuracy": 0.0,
183
- "completion_length": 2069.3515625,
184
- "degradation_rate": 0.0,
185
- "epoch": 0.047058823529411764,
186
- "grad_norm": 0.6907373861546955,
187
- "improvement_rate": 0.0,
188
- "kl": 0.0022356510162353516,
189
- "learning_rate": 2e-06,
190
- "loss": 0.0001,
191
- "reward": 0.13787749409675598,
192
- "reward_std": 0.08163860440254211,
193
- "rewards/AdaptiveTeachingReward": 0.13787749409675598,
194
- "step": 9,
195
- "student_accuracy": 0.0,
196
- "student_approach_length": 500.0,
197
- "teaching_length_mean": 1586.78125,
198
- "teaching_length_std": 1393.5538468081056,
199
- "token_efficiency": 0.009196431155361413
200
- },
201
- {
202
- "accuracy_delta": 0.0,
203
- "baseline_accuracy": 0.0,
204
- "completion_length": 2533.3203125,
205
- "degradation_rate": 0.0,
206
- "epoch": 0.05228758169934641,
207
- "grad_norm": 0.9569337200656036,
208
- "improvement_rate": 0.0,
209
- "kl": 0.002455472946166992,
210
- "learning_rate": 2e-06,
211
- "loss": 0.0001,
212
- "reward": 0.2650887817144394,
213
- "reward_std": 0.1834174394607544,
214
- "rewards/AdaptiveTeachingReward": 0.2650887817144394,
215
- "step": 10,
216
- "student_accuracy": 0.0,
217
- "student_approach_length": 500.0,
218
- "teaching_length_mean": 2718.53125,
219
- "teaching_length_std": 1545.6357044636015,
220
- "token_efficiency": 0.00983657689669804
221
- },
222
- {
223
- "accuracy_delta": 0.0,
224
- "baseline_accuracy": 0.0,
225
- "completion_length": 2366.4609375,
226
- "degradation_rate": 0.0,
227
- "epoch": 0.05751633986928104,
228
- "grad_norm": 0.1992844149700769,
229
- "improvement_rate": 0.0,
230
- "kl": 0.0023772716522216797,
231
- "learning_rate": 2e-06,
232
- "loss": 0.0001,
233
- "reward": 0.00799931213259697,
234
- "reward_std": 0.045250944793224335,
235
- "rewards/AdaptiveTeachingReward": 0.00799931213259697,
236
- "step": 11,
237
- "student_accuracy": 0.0,
238
- "student_approach_length": 500.0,
239
- "teaching_length_mean": 2560.28125,
240
- "teaching_length_std": 1264.0513369895032,
241
- "token_efficiency": 0.000244351732796639
242
- },
243
- {
244
- "accuracy_delta": 0.0,
245
- "baseline_accuracy": 0.0,
246
- "completion_length": 2429.25,
247
- "degradation_rate": 0.0,
248
- "epoch": 0.06274509803921569,
249
- "grad_norm": 0.02438642631727396,
250
- "improvement_rate": 0.0,
251
- "kl": 0.0028073787689208984,
252
- "learning_rate": 2e-06,
253
- "loss": 0.0001,
254
- "reward": 0.0,
255
- "reward_std": 0.0,
256
- "rewards/AdaptiveTeachingReward": 0.0,
257
- "step": 12,
258
- "student_accuracy": 0.0,
259
- "student_approach_length": 500.0,
260
- "teaching_length_mean": 2684.0,
261
- "teaching_length_std": 1537.9383137400418,
262
- "token_efficiency": 0.0
263
- },
264
- {
265
- "accuracy_delta": 0.03125,
266
- "baseline_accuracy": 0.03125,
267
- "completion_length": 2985.0234375,
268
- "degradation_rate": 0.03125,
269
- "epoch": 0.06797385620915032,
270
- "grad_norm": 1.9377263264415499,
271
- "improvement_rate": 0.0625,
272
- "kl": 0.002295255661010742,
273
- "learning_rate": 2e-06,
274
- "loss": 0.0001,
275
- "reward": 0.3229658156633377,
276
- "reward_std": 0.2836003005504608,
277
- "rewards/AdaptiveTeachingReward": 0.3229658156633377,
278
- "step": 13,
279
- "student_accuracy": 0.0625,
280
- "student_approach_length": 500.0,
281
- "teaching_length_mean": 2764.78125,
282
- "teaching_length_std": 1359.6938149421062,
283
- "token_efficiency": 0.011864912871618307
284
- },
285
- {
286
- "accuracy_delta": 0.0,
287
- "baseline_accuracy": 0.40625,
288
- "completion_length": 2860.7890625,
289
- "degradation_rate": 0.03125,
290
- "epoch": 0.07320261437908497,
291
- "grad_norm": 0.7397348398480618,
292
- "improvement_rate": 0.03125,
293
- "kl": 0.0022339820861816406,
294
- "learning_rate": 2e-06,
295
- "loss": 0.0001,
296
- "reward": 0.3183840811252594,
297
- "reward_std": 0.2730633243918419,
298
- "rewards/AdaptiveTeachingReward": 0.3183840811252594,
299
- "step": 14,
300
- "student_accuracy": 0.40625,
301
- "student_approach_length": 500.0,
302
- "teaching_length_mean": 3300.75,
303
- "teaching_length_std": 1258.5522551939885,
304
- "token_efficiency": 0.009677591351820222
305
- },
306
- {
307
- "accuracy_delta": -0.25,
308
- "baseline_accuracy": 0.59375,
309
- "completion_length": 2667.375,
310
- "degradation_rate": 0.375,
311
- "epoch": 0.0784313725490196,
312
- "grad_norm": 0.591091766464445,
313
- "improvement_rate": 0.125,
314
- "kl": 0.0020873546600341797,
315
- "learning_rate": 2e-06,
316
- "loss": 0.0001,
317
- "reward": 0.14508739858865738,
318
- "reward_std": 0.1915995106101036,
319
- "rewards/AdaptiveTeachingReward": 0.14508739858865738,
320
- "step": 15,
321
- "student_accuracy": 0.34375,
322
- "student_approach_length": 500.0,
323
- "teaching_length_mean": 2580.1875,
324
- "teaching_length_std": 1411.9177183341415,
325
- "token_efficiency": 0.006345218750950054
326
- },
327
- {
328
- "accuracy_delta": -0.125,
329
- "baseline_accuracy": 0.78125,
330
- "completion_length": 2397.8046875,
331
- "degradation_rate": 0.28125,
332
- "epoch": 0.08366013071895424,
333
- "grad_norm": 1.0467841728187868,
334
- "improvement_rate": 0.15625,
335
- "kl": 0.0020101070404052734,
336
- "learning_rate": 2e-06,
337
- "loss": 0.0001,
338
- "reward": 0.29722827672958374,
339
- "reward_std": 0.29581306129693985,
340
- "rewards/AdaptiveTeachingReward": 0.29722827672958374,
341
- "step": 16,
342
- "student_accuracy": 0.65625,
343
- "student_approach_length": 500.0,
344
- "teaching_length_mean": 1867.65625,
345
- "teaching_length_std": 1645.2406135166107,
346
- "token_efficiency": 0.016315762169946447
347
- },
348
- {
349
- "accuracy_delta": 0.0,
350
- "baseline_accuracy": 0.4375,
351
- "completion_length": 2681.4296875,
352
- "degradation_rate": 0.0625,
353
- "epoch": 0.08888888888888889,
354
- "grad_norm": 1.0178368263353954,
355
- "improvement_rate": 0.0625,
356
- "kl": 0.0022170543670654297,
357
- "learning_rate": 2e-06,
358
- "loss": 0.0001,
359
- "reward": 0.27442795038223267,
360
- "reward_std": 0.24267160892486572,
361
- "rewards/AdaptiveTeachingReward": 0.27442795038223267,
362
- "step": 17,
363
- "student_accuracy": 0.4375,
364
- "student_approach_length": 500.0,
365
- "teaching_length_mean": 1946.4375,
366
- "teaching_length_std": 1595.4173133278073,
367
- "token_efficiency": 0.01725690617086827
368
- },
369
- {
370
- "accuracy_delta": 0.0,
371
- "baseline_accuracy": 0.0,
372
- "completion_length": 2260.1484375,
373
- "degradation_rate": 0.0,
374
- "epoch": 0.09411764705882353,
375
- "grad_norm": 0.39094525161531923,
376
- "improvement_rate": 0.0,
377
- "kl": 0.0026335716247558594,
378
- "learning_rate": 2e-06,
379
- "loss": 0.0001,
380
- "reward": 0.15987491607666016,
381
- "reward_std": 0.12795361876487732,
382
- "rewards/AdaptiveTeachingReward": 0.15987491607666016,
383
- "step": 18,
384
- "student_accuracy": 0.0,
385
- "student_approach_length": 500.0,
386
- "teaching_length_mean": 2452.8125,
387
- "teaching_length_std": 1687.6677585883976,
388
- "token_efficiency": 0.00733118954839666
389
- },
390
- {
391
- "accuracy_delta": 0.09375,
392
- "baseline_accuracy": 0.34375,
393
- "completion_length": 2509.359375,
394
- "degradation_rate": 0.0,
395
- "epoch": 0.09934640522875816,
396
- "grad_norm": 1.112027848483532,
397
- "improvement_rate": 0.09375,
398
- "kl": 0.0021845102310180664,
399
- "learning_rate": 2e-06,
400
- "loss": 0.0001,
401
- "reward": 0.32069824635982513,
402
- "reward_std": 0.1779022440314293,
403
- "rewards/AdaptiveTeachingReward": 0.32069824635982513,
404
- "step": 19,
405
- "student_accuracy": 0.4375,
406
- "student_approach_length": 500.0,
407
- "teaching_length_mean": 1688.25,
408
- "teaching_length_std": 1591.1127810270257,
409
- "token_efficiency": 0.02000900419695598
410
- },
411
- {
412
- "accuracy_delta": 0.15625,
413
- "baseline_accuracy": 0.25,
414
- "completion_length": 2566.109375,
415
- "degradation_rate": 0.125,
416
- "epoch": 0.10457516339869281,
417
- "grad_norm": 0.635668741879516,
418
- "improvement_rate": 0.28125,
419
- "kl": 0.0020592212677001953,
420
- "learning_rate": 2e-06,
421
- "loss": 0.0001,
422
- "reward": 0.3237999305129051,
423
- "reward_std": 0.29250405728816986,
424
- "rewards/AdaptiveTeachingReward": 0.3237999305129051,
425
- "step": 20,
426
- "student_accuracy": 0.40625,
427
- "student_approach_length": 500.0,
428
- "teaching_length_mean": 3000.8125,
429
- "teaching_length_std": 1146.9664495361749,
430
- "token_efficiency": 0.009248973352977438
431
- },
432
- {
433
- "accuracy_delta": -0.15625,
434
- "baseline_accuracy": 0.5,
435
- "completion_length": 2821.34375,
436
- "degradation_rate": 0.15625,
437
- "epoch": 0.10980392156862745,
438
- "grad_norm": 1.038632983891241,
439
- "improvement_rate": 0.0,
440
- "kl": 0.0022677183151245117,
441
- "learning_rate": 2e-06,
442
- "loss": 0.0001,
443
- "reward": 0.26167380064725876,
444
- "reward_std": 0.20054005086421967,
445
- "rewards/AdaptiveTeachingReward": 0.26167380064725876,
446
- "step": 21,
447
- "student_accuracy": 0.34375,
448
- "student_approach_length": 500.0,
449
- "teaching_length_mean": 2324.625,
450
- "teaching_length_std": 1783.1465396131703,
451
- "token_efficiency": 0.011391752427342916
452
- },
453
- {
454
- "accuracy_delta": -0.0625,
455
- "baseline_accuracy": 0.6875,
456
- "completion_length": 1981.4453125,
457
- "degradation_rate": 0.21875,
458
- "epoch": 0.11503267973856209,
459
- "grad_norm": 1.0591629807323937,
460
- "improvement_rate": 0.15625,
461
- "kl": 0.0025501251220703125,
462
- "learning_rate": 2e-06,
463
- "loss": 0.0001,
464
- "reward": 0.3476671576499939,
465
- "reward_std": 0.32001765072345734,
466
- "rewards/AdaptiveTeachingReward": 0.3476671576499939,
467
- "step": 22,
468
- "student_accuracy": 0.625,
469
- "student_approach_length": 500.0,
470
- "teaching_length_mean": 1747.6875,
471
- "teaching_length_std": 1544.1982674617702,
472
- "token_efficiency": 0.019930595836054183
473
- },
474
- {
475
- "accuracy_delta": 0.0,
476
- "baseline_accuracy": 0.6875,
477
- "completion_length": 2491.2109375,
478
- "degradation_rate": 0.15625,
479
- "epoch": 0.12026143790849673,
480
- "grad_norm": 0.8736384977021919,
481
- "improvement_rate": 0.15625,
482
- "kl": 0.002077817916870117,
483
- "learning_rate": 2e-06,
484
- "loss": 0.0001,
485
- "reward": 0.3966591954231262,
486
- "reward_std": 0.35394637286663055,
487
- "rewards/AdaptiveTeachingReward": 0.3966591954231262,
488
- "step": 23,
489
- "student_accuracy": 0.6875,
490
- "student_approach_length": 500.0,
491
- "teaching_length_mean": 2244.40625,
492
- "teaching_length_std": 1464.1512714006012,
493
- "token_efficiency": 0.020170202633726
494
- },
495
- {
496
- "accuracy_delta": -0.0625,
497
- "baseline_accuracy": 0.40625,
498
- "completion_length": 3183.6796875,
499
- "degradation_rate": 0.09375,
500
- "epoch": 0.12549019607843137,
501
- "grad_norm": 0.731937384244321,
502
- "improvement_rate": 0.03125,
503
- "kl": 0.002083301544189453,
504
- "learning_rate": 2e-06,
505
- "loss": 0.0001,
506
- "reward": 0.24638524651527405,
507
- "reward_std": 0.25337880849838257,
508
- "rewards/AdaptiveTeachingReward": 0.24638524651527405,
509
- "step": 24,
510
- "student_accuracy": 0.34375,
511
- "student_approach_length": 500.0,
512
- "teaching_length_mean": 2833.75,
513
- "teaching_length_std": 883.8529811162587,
514
- "token_efficiency": 0.0154971457828618
515
- },
516
- {
517
- "accuracy_delta": 0.09375,
518
- "baseline_accuracy": 0.09375,
519
- "completion_length": 2996.8203125,
520
- "degradation_rate": 0.0625,
521
- "epoch": 0.13071895424836602,
522
- "grad_norm": 1.0366727211421645,
523
- "improvement_rate": 0.15625,
524
- "kl": 0.002071857452392578,
525
- "learning_rate": 2e-06,
526
- "loss": 0.0001,
527
- "reward": 0.10002126544713974,
528
- "reward_std": 0.12362907081842422,
529
- "rewards/AdaptiveTeachingReward": 0.10002126544713974,
530
- "step": 25,
531
- "student_accuracy": 0.1875,
532
- "student_approach_length": 500.0,
533
- "teaching_length_mean": 2241.40625,
534
- "teaching_length_std": 1680.2583046873353,
535
- "token_efficiency": 0.005314979233325259
536
- },
537
- {
538
- "accuracy_delta": 0.03125,
539
- "baseline_accuracy": 0.125,
540
- "completion_length": 2699.5078125,
541
- "degradation_rate": 0.125,
542
- "epoch": 0.13594771241830064,
543
- "grad_norm": 0.8849958564728577,
544
- "improvement_rate": 0.15625,
545
- "kl": 0.00244140625,
546
- "learning_rate": 2e-06,
547
- "loss": 0.0001,
548
- "reward": 0.21003766357898712,
549
- "reward_std": 0.27024491131305695,
550
- "rewards/AdaptiveTeachingReward": 0.21003766357898712,
551
- "step": 26,
552
- "student_accuracy": 0.15625,
553
- "student_approach_length": 500.0,
554
- "teaching_length_mean": 2865.75,
555
- "teaching_length_std": 1575.6950824020187,
556
- "token_efficiency": 0.00747702067329278
557
- },
558
- {
559
- "accuracy_delta": 0.09375,
560
- "baseline_accuracy": 0.0,
561
- "completion_length": 2216.78125,
562
- "degradation_rate": 0.0,
563
- "epoch": 0.1411764705882353,
564
- "grad_norm": 0.6451950468247998,
565
- "improvement_rate": 0.09375,
566
- "kl": 0.0021767616271972656,
567
- "learning_rate": 2e-06,
568
- "loss": 0.0001,
569
- "reward": 0.2089657336473465,
570
- "reward_std": 0.21514078974723816,
571
- "rewards/AdaptiveTeachingReward": 0.2089657336473465,
572
- "step": 27,
573
- "student_accuracy": 0.09375,
574
- "student_approach_length": 499.96875,
575
- "teaching_length_mean": 2619.40625,
576
- "teaching_length_std": 1265.4369118665845,
577
- "token_efficiency": 0.0060904088353781515
578
- },
579
- {
580
- "accuracy_delta": 0.0,
581
- "baseline_accuracy": 0.0,
582
- "completion_length": 2668.4140625,
583
- "degradation_rate": 0.0,
584
- "epoch": 0.14640522875816994,
585
- "grad_norm": 0.7896767066978999,
586
- "improvement_rate": 0.0,
587
- "kl": 0.002083301544189453,
588
- "learning_rate": 2e-06,
589
- "loss": 0.0001,
590
- "reward": 0.14528799057006836,
591
- "reward_std": 0.09566954523324966,
592
- "rewards/AdaptiveTeachingReward": 0.14528799057006836,
593
- "step": 28,
594
- "student_accuracy": 0.0,
595
- "student_approach_length": 500.0,
596
- "teaching_length_mean": 3113.90625,
597
- "teaching_length_std": 884.9974614855895,
598
- "token_efficiency": 0.0035470700822770596
599
- },
600
- {
601
- "accuracy_delta": 0.03125,
602
- "baseline_accuracy": 0.0,
603
- "completion_length": 2467.4140625,
604
- "degradation_rate": 0.0,
605
- "epoch": 0.15163398692810456,
606
- "grad_norm": 0.22872066233966626,
607
- "improvement_rate": 0.03125,
608
- "kl": 0.0025146007537841797,
609
- "learning_rate": 2e-06,
610
- "loss": 0.0001,
611
- "reward": 0.007998689077794552,
612
- "reward_std": 0.04524742066860199,
613
- "rewards/AdaptiveTeachingReward": 0.007998689077794552,
614
- "step": 29,
615
- "student_accuracy": 0.03125,
616
- "student_approach_length": 500.0,
617
- "teaching_length_mean": 2764.9375,
618
- "teaching_length_std": 1560.6896673437209,
619
- "token_efficiency": 0.0002591402932910396
620
- },
621
- {
622
- "accuracy_delta": 0.0,
623
- "baseline_accuracy": 0.0,
624
- "completion_length": 2854.59375,
625
- "degradation_rate": 0.0,
626
- "epoch": 0.1568627450980392,
627
- "grad_norm": 0.5744778046050318,
628
- "improvement_rate": 0.0,
629
- "kl": 0.0022513866424560547,
630
- "learning_rate": 2e-06,
631
- "loss": 0.0001,
632
- "reward": 0.16005077958106995,
633
- "reward_std": 0.10021104663610458,
634
- "rewards/AdaptiveTeachingReward": 0.16005077958106995,
635
- "step": 30,
636
- "student_accuracy": 0.0,
637
- "student_approach_length": 500.0,
638
- "teaching_length_mean": 2139.71875,
639
- "teaching_length_std": 1711.9645016733543,
640
- "token_efficiency": 0.007949871083127776
641
- }
642
- ],
643
- "logging_steps": 1,
644
- "max_steps": 250,
645
- "num_input_tokens_seen": 0,
646
- "num_train_epochs": 2,
647
- "save_steps": 10,
648
- "stateful_callbacks": {
649
- "TrainerControl": {
650
- "args": {
651
- "should_epoch_stop": false,
652
- "should_evaluate": false,
653
- "should_log": false,
654
- "should_save": true,
655
- "should_training_stop": false
656
- },
657
- "attributes": {}
658
- }
659
- },
660
- "total_flos": 0.0,
661
- "train_batch_size": 16,
662
- "trial_name": null,
663
- "trial_params": null
664
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint/training_args.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:fb102755f6a8032c8da7daf88cca9336f93aa1768d8d06988bb3559ee06587f7
3
- size 129
 
 
 
 
checkpoint/vocab.json DELETED
The diff for this file is too large to render. See raw diff
 
checkpoint/zero_to_fp32.py DELETED
@@ -1,674 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example:
14
- # python zero_to_fp32.py . output_dir/
15
- # or
16
- # python zero_to_fp32.py . output_dir/ --safe_serialization
17
-
18
- import argparse
19
- import torch
20
- import glob
21
- import math
22
- import os
23
- import re
24
- import json
25
- from tqdm import tqdm
26
- from collections import OrderedDict
27
- from dataclasses import dataclass
28
-
29
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
- # DeepSpeed data structures it has to be available in the current python environment.
31
- from deepspeed.utils import logger
32
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
-
36
-
37
- @dataclass
38
- class zero_model_state:
39
- buffers: dict()
40
- param_shapes: dict()
41
- shared_params: list
42
- ds_version: int
43
- frozen_param_shapes: dict()
44
- frozen_param_fragments: dict()
45
-
46
-
47
- debug = 0
48
-
49
- # load to cpu
50
- device = torch.device('cpu')
51
-
52
-
53
- def atoi(text):
54
- return int(text) if text.isdigit() else text
55
-
56
-
57
- def natural_keys(text):
58
- '''
59
- alist.sort(key=natural_keys) sorts in human order
60
- http://nedbatchelder.com/blog/200712/human_sorting.html
61
- (See Toothy's implementation in the comments)
62
- '''
63
- return [atoi(c) for c in re.split(r'(\d+)', text)]
64
-
65
-
66
- def get_model_state_file(checkpoint_dir, zero_stage):
67
- if not os.path.isdir(checkpoint_dir):
68
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
-
70
- # there should be only one file
71
- if zero_stage <= 2:
72
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
- elif zero_stage == 3:
74
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
-
76
- if not os.path.exists(file):
77
- raise FileNotFoundError(f"can't find model states file at '{file}'")
78
-
79
- return file
80
-
81
-
82
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
- # XXX: need to test that this simple glob rule works for multi-node setup too
84
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
-
86
- if len(ckpt_files) == 0:
87
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
-
89
- return ckpt_files
90
-
91
-
92
- def get_optim_files(checkpoint_dir):
93
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
-
95
-
96
- def get_model_state_files(checkpoint_dir):
97
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
-
99
-
100
- def parse_model_states(files):
101
- zero_model_states = []
102
- for file in files:
103
- state_dict = torch.load(file, map_location=device)
104
-
105
- if BUFFER_NAMES not in state_dict:
106
- raise ValueError(f"{file} is not a model state checkpoint")
107
- buffer_names = state_dict[BUFFER_NAMES]
108
- if debug:
109
- print("Found buffers:", buffer_names)
110
-
111
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
- param_shapes = state_dict[PARAM_SHAPES]
114
-
115
- # collect parameters that are included in param_shapes
116
- param_names = []
117
- for s in param_shapes:
118
- for name in s.keys():
119
- param_names.append(name)
120
-
121
- # update with frozen parameters
122
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
- if frozen_param_shapes is not None:
124
- if debug:
125
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
- param_names += list(frozen_param_shapes.keys())
127
-
128
- # handle shared params
129
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
-
131
- ds_version = state_dict.get(DS_VERSION, None)
132
-
133
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
-
135
- z_model_state = zero_model_state(buffers=buffers,
136
- param_shapes=param_shapes,
137
- shared_params=shared_params,
138
- ds_version=ds_version,
139
- frozen_param_shapes=frozen_param_shapes,
140
- frozen_param_fragments=frozen_param_fragments)
141
- zero_model_states.append(z_model_state)
142
-
143
- return zero_model_states
144
-
145
-
146
- def parse_optim_states(files, ds_checkpoint_dir):
147
- total_files = len(files)
148
- state_dicts = []
149
- for f in files:
150
- state_dict = torch.load(f, map_location=device)
151
- # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
- # and also handle the case where it was already removed by another helper script
153
- state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
- state_dicts.append(state_dict)
155
-
156
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
- raise ValueError(f"{files[0]} is not a zero checkpoint")
158
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
-
161
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
- # parameters can be different from data parallelism for non-expert parameters. So we can just
163
- # use the max of the partition_count to get the dp world_size.
164
-
165
- if type(world_size) is list:
166
- world_size = max(world_size)
167
-
168
- if world_size != total_files:
169
- raise ValueError(
170
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
- )
173
-
174
- # the groups are named differently in each stage
175
- if zero_stage <= 2:
176
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
- elif zero_stage == 3:
178
- fp32_groups_key = FP32_FLAT_GROUPS
179
- else:
180
- raise ValueError(f"unknown zero stage {zero_stage}")
181
-
182
- if zero_stage <= 2:
183
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
- elif zero_stage == 3:
185
- # if there is more than one param group, there will be multiple flattened tensors - one
186
- # flattened tensor per group - for simplicity merge them into a single tensor
187
- #
188
- # XXX: could make the script more memory efficient for when there are multiple groups - it
189
- # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
-
191
- fp32_flat_groups = [
192
- torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
- ]
194
-
195
- return zero_stage, world_size, fp32_flat_groups
196
-
197
-
198
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
- """
200
- Returns fp32 state_dict reconstructed from ds checkpoint
201
-
202
- Args:
203
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
-
205
- """
206
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
-
208
- optim_files = get_optim_files(ds_checkpoint_dir)
209
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
-
212
- model_files = get_model_state_files(ds_checkpoint_dir)
213
-
214
- zero_model_states = parse_model_states(model_files)
215
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
-
217
- if zero_stage <= 2:
218
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
- exclude_frozen_parameters)
220
- elif zero_stage == 3:
221
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
- exclude_frozen_parameters)
223
-
224
-
225
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
- return
228
-
229
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
-
232
- if debug:
233
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
-
236
- wanted_params = len(frozen_param_shapes)
237
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
- print(f'Frozen params: Have {avail_numel} numels to process.')
240
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
-
242
- total_params = 0
243
- total_numel = 0
244
- for name, shape in frozen_param_shapes.items():
245
- total_params += 1
246
- unpartitioned_numel = shape.numel()
247
- total_numel += unpartitioned_numel
248
-
249
- state_dict[name] = frozen_param_fragments[name]
250
-
251
- if debug:
252
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
-
254
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
-
256
-
257
- def _has_callable(obj, fn):
258
- attr = getattr(obj, fn, None)
259
- return callable(attr)
260
-
261
-
262
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
- param_shapes = zero_model_states[0].param_shapes
264
-
265
- # Reconstruction protocol:
266
- #
267
- # XXX: document this
268
-
269
- if debug:
270
- for i in range(world_size):
271
- for j in range(len(fp32_flat_groups[0])):
272
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
-
274
- # XXX: memory usage doubles here (zero2)
275
- num_param_groups = len(fp32_flat_groups[0])
276
- merged_single_partition_of_fp32_groups = []
277
- for i in range(num_param_groups):
278
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
- avail_numel = sum(
282
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
-
284
- if debug:
285
- wanted_params = sum([len(shapes) for shapes in param_shapes])
286
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
- # not asserting if there is a mismatch due to possible padding
288
- print(f"Have {avail_numel} numels to process.")
289
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
-
291
- # params
292
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
- # out-of-core computing solution
294
- total_numel = 0
295
- total_params = 0
296
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
- offset = 0
298
- avail_numel = full_single_fp32_vector.numel()
299
- for name, shape in shapes.items():
300
-
301
- unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
- total_numel += unpartitioned_numel
303
- total_params += 1
304
-
305
- if debug:
306
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
- offset += unpartitioned_numel
309
-
310
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
- # live optimizer object, so we are checking that the numbers are within the right range
314
- align_to = 2 * world_size
315
-
316
- def zero2_align(x):
317
- return align_to * math.ceil(x / align_to)
318
-
319
- if debug:
320
- print(f"original offset={offset}, avail_numel={avail_numel}")
321
-
322
- offset = zero2_align(offset)
323
- avail_numel = zero2_align(avail_numel)
324
-
325
- if debug:
326
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
-
328
- # Sanity check
329
- if offset != avail_numel:
330
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
-
332
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
-
334
-
335
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
- exclude_frozen_parameters):
337
- state_dict = OrderedDict()
338
-
339
- # buffers
340
- buffers = zero_model_states[0].buffers
341
- state_dict.update(buffers)
342
- if debug:
343
- print(f"added {len(buffers)} buffers")
344
-
345
- if not exclude_frozen_parameters:
346
- _zero2_merge_frozen_params(state_dict, zero_model_states)
347
-
348
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
-
350
- # recover shared parameters
351
- for pair in zero_model_states[0].shared_params:
352
- if pair[1] in state_dict:
353
- state_dict[pair[0]] = state_dict[pair[1]]
354
-
355
- return state_dict
356
-
357
-
358
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
- remainder = unpartitioned_numel % world_size
360
- padding_numel = (world_size - remainder) if remainder else 0
361
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
- return partitioned_numel, padding_numel
363
-
364
-
365
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
- return
368
-
369
- if debug:
370
- for i in range(world_size):
371
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
-
374
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
- wanted_params = len(frozen_param_shapes)
376
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
- print(f'Frozen params: Have {avail_numel} numels to process.')
379
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
-
381
- total_params = 0
382
- total_numel = 0
383
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
- total_params += 1
385
- unpartitioned_numel = shape.numel()
386
- total_numel += unpartitioned_numel
387
-
388
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
-
391
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
-
393
- if debug:
394
- print(
395
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
- )
397
-
398
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
-
400
-
401
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
- param_shapes = zero_model_states[0].param_shapes
403
- avail_numel = fp32_flat_groups[0].numel() * world_size
404
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
- # param, re-consolidating each param, while dealing with padding if any
406
-
407
- # merge list of dicts, preserving order
408
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
-
410
- if debug:
411
- for i in range(world_size):
412
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
-
414
- wanted_params = len(param_shapes)
415
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
- # not asserting if there is a mismatch due to possible padding
417
- avail_numel = fp32_flat_groups[0].numel() * world_size
418
- print(f"Trainable params: Have {avail_numel} numels to process.")
419
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
-
421
- # params
422
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
- # out-of-core computing solution
424
- offset = 0
425
- total_numel = 0
426
- total_params = 0
427
- for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
- unpartitioned_numel = shape.numel()
429
- total_numel += unpartitioned_numel
430
- total_params += 1
431
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
-
433
- if debug:
434
- print(
435
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
- )
437
-
438
- # XXX: memory usage doubles here
439
- state_dict[name] = torch.cat(
440
- tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
- 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
- offset += partitioned_numel
443
-
444
- offset *= world_size
445
-
446
- # Sanity check
447
- if offset != avail_numel:
448
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
-
450
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
-
452
-
453
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
- exclude_frozen_parameters):
455
- state_dict = OrderedDict()
456
-
457
- # buffers
458
- buffers = zero_model_states[0].buffers
459
- state_dict.update(buffers)
460
- if debug:
461
- print(f"added {len(buffers)} buffers")
462
-
463
- if not exclude_frozen_parameters:
464
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
-
466
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
-
468
- # recover shared parameters
469
- for pair in zero_model_states[0].shared_params:
470
- if pair[1] in state_dict:
471
- state_dict[pair[0]] = state_dict[pair[1]]
472
-
473
- return state_dict
474
-
475
-
476
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
- """
478
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
- via a model hub.
481
-
482
- Args:
483
- - ``checkpoint_dir``: path to the desired checkpoint folder
484
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
- - ``exclude_frozen_parameters``: exclude frozen parameters
486
-
487
- Returns:
488
- - pytorch ``state_dict``
489
-
490
- Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
- you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
- the checkpoint.
493
-
494
- A typical usage might be ::
495
-
496
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
- # do the training and checkpoint saving
498
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
- model = model.cpu() # move to cpu
500
- model.load_state_dict(state_dict)
501
- # submit to model hub or save the model to share with others
502
-
503
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
- application. i.e. you will need to re-initialize the deepspeed engine, since
505
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
-
507
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
-
509
- """
510
- if tag is None:
511
- latest_path = os.path.join(checkpoint_dir, 'latest')
512
- if os.path.isfile(latest_path):
513
- with open(latest_path, 'r') as fd:
514
- tag = fd.read().strip()
515
- else:
516
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
-
518
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
-
520
- if not os.path.isdir(ds_checkpoint_dir):
521
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
-
523
- return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
-
525
-
526
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
- output_dir,
528
- max_shard_size="5GB",
529
- safe_serialization=False,
530
- tag=None,
531
- exclude_frozen_parameters=False):
532
- """
533
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
-
536
- Args:
537
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
- - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
- - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
- - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
- - ``exclude_frozen_parameters``: exclude frozen parameters
543
- """
544
- # Dependency pre-check
545
- if safe_serialization:
546
- try:
547
- from safetensors.torch import save_file
548
- except ImportError:
549
- print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
- raise
551
- if max_shard_size is not None:
552
- try:
553
- from huggingface_hub import split_torch_state_dict_into_shards
554
- except ImportError:
555
- print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
- raise
557
-
558
- # Convert zero checkpoint to state_dict
559
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
-
561
- # Shard the model if it is too big.
562
- weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
- if max_shard_size is not None:
564
- filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
- state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
- filename_pattern=filename_pattern,
567
- max_shard_size=max_shard_size)
568
- else:
569
- from collections import namedtuple
570
- StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
- state_dict_split = StateDictSplit(is_sharded=False,
572
- filename_to_tensors={weights_name: list(state_dict.keys())})
573
-
574
- # Save the model
575
- filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
- for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
- shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
- output_path = os.path.join(output_dir, shard_file)
579
- if safe_serialization:
580
- save_file(shard, output_path, metadata={"format": "pt"})
581
- else:
582
- torch.save(shard, output_path)
583
-
584
- # Save index if sharded
585
- if state_dict_split.is_sharded:
586
- index = {
587
- "metadata": state_dict_split.metadata,
588
- "weight_map": state_dict_split.tensor_to_filename,
589
- }
590
- save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
- save_index_file = os.path.join(output_dir, save_index_file)
592
- with open(save_index_file, "w", encoding="utf-8") as f:
593
- content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
- f.write(content)
595
-
596
-
597
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
- """
599
- 1. Put the provided model to cpu
600
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
- 3. Load it into the provided model
602
-
603
- Args:
604
- - ``model``: the model object to update
605
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
-
608
- Returns:
609
- - ``model`: modified model
610
-
611
- Make sure you have plenty of CPU memory available before you call this function. If you don't
612
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
- conveniently placed for you in the checkpoint folder.
614
-
615
- A typical usage might be ::
616
-
617
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
- # submit to model hub or save the model to share with others
620
-
621
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
-
625
- """
626
- logger.info(f"Extracting fp32 weights")
627
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
-
629
- logger.info(f"Overwriting model with fp32 weights")
630
- model = model.cpu()
631
- model.load_state_dict(state_dict, strict=False)
632
-
633
- return model
634
-
635
-
636
- if __name__ == "__main__":
637
- parser = argparse.ArgumentParser()
638
- parser.add_argument("checkpoint_dir",
639
- type=str,
640
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
- parser.add_argument("output_dir",
642
- type=str,
643
- help="directory to the pytorch fp32 state_dict output files"
644
- "(e.g. path/checkpoint-12-output/)")
645
- parser.add_argument(
646
- "--max_shard_size",
647
- type=str,
648
- default="5GB",
649
- help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
- "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
- "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
- "without CPU OOM issues.")
653
- parser.add_argument(
654
- "--safe_serialization",
655
- default=False,
656
- action='store_true',
657
- help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
- parser.add_argument("-t",
659
- "--tag",
660
- type=str,
661
- default=None,
662
- help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
- parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
- args = parser.parse_args()
666
-
667
- debug = args.debug
668
-
669
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
- args.output_dir,
671
- max_shard_size=args.max_shard_size,
672
- safe_serialization=args.safe_serialization,
673
- tag=args.tag,
674
- exclude_frozen_parameters=args.exclude_frozen_parameters)