--- license: apache-2.0 language: - en tags: - reinforcement-learning - teacher-student - adaptive-learning base_model: Qwen/Qwen3-8B datasets: - Arc-Intelligence/Arc-ATLAS-Teach-v0 --- # ATLAS-8B-Thinking Teacher model for adaptive RL training that improves any student model's performance through diagnostic probing and conditional teaching. ## Performance ![Performance Chart](https://github.com/Arc-Intelligence/ATLAS/blob/main/public/performance-chart.png?raw=true) | Metric | Improvement | |--------|------------| | **Average accuracy** | +15.7% | | **Completion rate** | +31% | | **Response efficiency** | -50% tokens | ## Quick Start ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained( "Arc-Intelligence/ATLAS-8B-Thinking", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Arc-Intelligence/ATLAS-8B-Thinking") ``` ## Training Framework Use with [ATLAS framework](https://github.com/Arc-Intelligence/ATLAS): ```bash git clone https://github.com/Arc-Intelligence/ATLAS cd ATLAS bash scripts/install_py312.sh # Run training scripts/launch.sh 4 configs/run/teacher_sft.yaml scripts/launch_with_server.sh 1 3 configs/run/teacher_rcl.yaml ``` ## Model Details - **Base:** Qwen3-8B - **Context:** 8192 tokens - **Training:** SFT → RL with GRPO - **Dataset:** [Arc-ATLAS-Teach-v0](https://huggingface.co/datasets/Arc-Intelligence/Arc-ATLAS-Teach-v0) ## Citation ```bibtex @article{atlas2025, title={ATLAS: Adaptive Training Methodology for RL}, author={Arc Intelligence}, year={2025} } ``` ## Links - [GitHub Repository](https://github.com/Arc-Intelligence/ATLAS) - [ATLAS-8B-Instruct](https://huggingface.co/Arc-Intelligence/ATLAS-8B-Instruct) - [Training Dataset](https://huggingface.co/datasets/Arc-Intelligence/Arc-ATLAS-Teach-v0)