--- license: mit --- # Skin Disease Prediction Experimental ## 🚀 Usage Example ```python import torch from transformers import AutoImageProcessor, SiglipForImageClassification from PIL import Image import torch.nn.functional as F model_path = "Ateeqq/skin-disease-prediction-exp-v1" processor = AutoImageProcessor.from_pretrained(model_path) model = SiglipForImageClassification.from_pretrained(model_path) image_path = r"/content/download.jpg" image = Image.open(image_path).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits probabilities = F.softmax(logits, dim=1) predicted_class_id = logits.argmax().item() predicted_class_label = model.config.id2label[predicted_class_id] confidence_scores = probabilities[0].tolist() print(f"Predicted class ID: {predicted_class_id}") print(f"Predicted class label: {predicted_class_label}\n") for i, score in enumerate(confidence_scores): label = model.config.id2label[i] print(f"Confidence for '{label}': {score:.6f}") ``` ## Output ``` Predicted class ID: 5 Predicted class label: Warts Molluscum and other Viral Infections Confidence for 'Atopic Dermatitis': 0.000061 Confidence for 'Eczema': 0.000006 Confidence for 'Psoriasis pictures Lichen Planus and related diseases': 0.000385 Confidence for 'Seborrheic Keratoses and other Benign Tumors': 0.000000 Confidence for 'Tinea Ringworm Candidiasis and other Fungal Infections': 0.000000 Confidence for 'Warts Molluscum and other Viral Infections': 0.999548 ``` ## 📊 Training Metrics ![Epoch Results](https://huggingface.co/Ateeqq/skin-disease-prediction-exp-v1/resolve/main/Screenshot%202025-10-12%20002654.png) ### 📌 Confusion Matrix ![Metrics](https://huggingface.co/Ateeqq/skin-disease-prediction-exp-v1/resolve/main/output.png) ### Dataset https://www.kaggle.com/datasets/ismailpromus/skin-diseases-image-dataset