Upload folder using huggingface_hub
Browse files- gemma_model.py +31 -4
gemma_model.py
CHANGED
|
@@ -54,7 +54,7 @@ from transformers.utils import (
|
|
| 54 |
from .gemma_config import CostWiseGemmaConfig
|
| 55 |
from transformers.models.gemma2.modeling_gemma2 import Gemma2RMSNorm, Gemma2RotaryEmbedding, rotate_half, apply_rotary_pos_emb
|
| 56 |
from transformers.models.gemma2.modeling_gemma2 import Gemma2MLP, repeat_kv, Gemma2Attention, Gemma2FlashAttention2, Gemma2SdpaAttention, GEMMA2_ATTENTION_CLASSES, Gemma2DecoderLayer, GEMMA2_START_DOCSTRING
|
| 57 |
-
from transformers.models.gemma2.modeling_gemma2 import
|
| 58 |
|
| 59 |
if is_flash_attn_2_available():
|
| 60 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
|
@@ -77,6 +77,33 @@ def _get_unpad_data(attention_mask):
|
|
| 77 |
max_seqlen_in_batch,
|
| 78 |
)
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
GEMMA2_ATTENTION_CLASSES = {
|
| 82 |
"eager": Gemma2Attention,
|
|
@@ -213,7 +240,7 @@ def token_compress(compress_ratio,
|
|
| 213 |
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
|
| 214 |
GEMMA2_START_DOCSTRING,
|
| 215 |
)
|
| 216 |
-
class CostWiseGemmaModel(
|
| 217 |
"""
|
| 218 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GemmaDecoderLayer`]
|
| 219 |
|
|
@@ -466,10 +493,10 @@ class CostWiseHead(nn.Module):
|
|
| 466 |
return self.linear_head(**kwargs)
|
| 467 |
|
| 468 |
|
| 469 |
-
class CostWiseGemmaForCausalLM(
|
| 470 |
_tied_weights_keys = ["lm_head.weight"]
|
| 471 |
|
| 472 |
-
def __init__(self, config):
|
| 473 |
super().__init__(config)
|
| 474 |
self.model = CostWiseGemmaModel(config)
|
| 475 |
self.vocab_size = config.vocab_size
|
|
|
|
| 54 |
from .gemma_config import CostWiseGemmaConfig
|
| 55 |
from transformers.models.gemma2.modeling_gemma2 import Gemma2RMSNorm, Gemma2RotaryEmbedding, rotate_half, apply_rotary_pos_emb
|
| 56 |
from transformers.models.gemma2.modeling_gemma2 import Gemma2MLP, repeat_kv, Gemma2Attention, Gemma2FlashAttention2, Gemma2SdpaAttention, GEMMA2_ATTENTION_CLASSES, Gemma2DecoderLayer, GEMMA2_START_DOCSTRING
|
| 57 |
+
from transformers.models.gemma2.modeling_gemma2 import GEMMA2_INPUTS_DOCSTRING
|
| 58 |
|
| 59 |
if is_flash_attn_2_available():
|
| 60 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
|
|
|
| 77 |
max_seqlen_in_batch,
|
| 78 |
)
|
| 79 |
|
| 80 |
+
@add_start_docstrings(
|
| 81 |
+
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
|
| 82 |
+
GEMMA2_START_DOCSTRING,
|
| 83 |
+
)
|
| 84 |
+
class CostWiseGemma2PreTrainedModel(PreTrainedModel):
|
| 85 |
+
config_class = CostWiseGemmaConfig
|
| 86 |
+
base_model_prefix = "model"
|
| 87 |
+
supports_gradient_checkpointing = True
|
| 88 |
+
_no_split_modules = ["Gemma2DecoderLayer"]
|
| 89 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 90 |
+
_supports_flash_attn_2 = True
|
| 91 |
+
_supports_sdpa = True
|
| 92 |
+
_supports_cache_class = False
|
| 93 |
+
_supports_quantized_cache = False
|
| 94 |
+
_supports_static_cache = True
|
| 95 |
+
_is_stateful = True
|
| 96 |
+
|
| 97 |
+
def _init_weights(self, module):
|
| 98 |
+
std = self.config.initializer_range
|
| 99 |
+
if isinstance(module, nn.Linear):
|
| 100 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 101 |
+
if module.bias is not None:
|
| 102 |
+
module.bias.data.zero_()
|
| 103 |
+
elif isinstance(module, nn.Embedding):
|
| 104 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 105 |
+
if module.padding_idx is not None:
|
| 106 |
+
module.weight.data[module.padding_idx].zero_()
|
| 107 |
|
| 108 |
GEMMA2_ATTENTION_CLASSES = {
|
| 109 |
"eager": Gemma2Attention,
|
|
|
|
| 240 |
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
|
| 241 |
GEMMA2_START_DOCSTRING,
|
| 242 |
)
|
| 243 |
+
class CostWiseGemmaModel(CostWiseGemma2PreTrainedModel):
|
| 244 |
"""
|
| 245 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GemmaDecoderLayer`]
|
| 246 |
|
|
|
|
| 493 |
return self.linear_head(**kwargs)
|
| 494 |
|
| 495 |
|
| 496 |
+
class CostWiseGemmaForCausalLM(CostWiseGemma2PreTrainedModel):
|
| 497 |
_tied_weights_keys = ["lm_head.weight"]
|
| 498 |
|
| 499 |
+
def __init__(self, config: CostWiseGemmaConfig):
|
| 500 |
super().__init__(config)
|
| 501 |
self.model = CostWiseGemmaModel(config)
|
| 502 |
self.vocab_size = config.vocab_size
|