Merge branch 'main' of hf.co:BVRA/wildlife-mega-large
Browse files
README.md
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- image-classification
|
| 4 |
+
- ecology
|
| 5 |
+
- animals
|
| 6 |
+
- re-identification
|
| 7 |
+
library_name: wildlife-datasets
|
| 8 |
+
license: cc-by-nc-4.0
|
| 9 |
+
---
|
| 10 |
+
# Model card for MegaDescriptor-L-224
|
| 11 |
+
|
| 12 |
+
A Swin-L image feature model. Supervisely pre-trained on animal re-identification datasets.
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
## Model Details
|
| 16 |
+
- **Model Type:** Animal re-identification / feature backbone
|
| 17 |
+
- **Model Stats:**
|
| 18 |
+
- Params (M): 228.6
|
| 19 |
+
- Image size: 224 x 224
|
| 20 |
+
- Architecture: swin_large_patch4_window7_224
|
| 21 |
+
- **Paper:** [WildlifeDatasets_An_Open-Source_Toolkit_for_Animal_Re-Identification](https://openaccess.thecvf.com/content/WACV2024/html/Cermak_WildlifeDatasets_An_Open-Source_Toolkit_for_Animal_Re-Identification_WACV_2024_paper.html)
|
| 22 |
+
- **Related Papers:**
|
| 23 |
+
- [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
|
| 24 |
+
- [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/pdf/2304.07193.pdf)
|
| 25 |
+
- **Pretrain Dataset:** All available re-identification datasets --> https://github.com/WildlifeDatasets/wildlife-datasets
|
| 26 |
+
|
| 27 |
+
## Model Usage
|
| 28 |
+
### Image Embeddings
|
| 29 |
+
```python
|
| 30 |
+
|
| 31 |
+
import timm
|
| 32 |
+
import torch
|
| 33 |
+
import torchvision.transforms as T
|
| 34 |
+
|
| 35 |
+
from PIL import Image
|
| 36 |
+
from urllib.request import urlopen
|
| 37 |
+
|
| 38 |
+
model = timm.create_model("hf-hub:BVRA/MegaDescriptor-L-224", pretrained=True)
|
| 39 |
+
model = model.eval()
|
| 40 |
+
|
| 41 |
+
train_transforms = T.Compose([T.Resize(224),
|
| 42 |
+
T.ToTensor(),
|
| 43 |
+
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
| 44 |
+
|
| 45 |
+
img = Image.open(urlopen(
|
| 46 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
| 47 |
+
))
|
| 48 |
+
|
| 49 |
+
output = model(train_transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
|
| 50 |
+
# output is a (1, num_features) shaped tensor
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
## Citation
|
| 54 |
+
|
| 55 |
+
```bibtex
|
| 56 |
+
@inproceedings{vcermak2024wildlifedatasets,
|
| 57 |
+
title={WildlifeDatasets: An open-source toolkit for animal re-identification},
|
| 58 |
+
author={{\v{C}}erm{\'a}k, Vojt{\v{e}}ch and Picek, Lukas and Adam, Luk{\'a}{\v{s}} and Papafitsoros, Kostas},
|
| 59 |
+
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
|
| 60 |
+
pages={5953--5963},
|
| 61 |
+
year={2024}
|
| 62 |
+
}
|
| 63 |
+
```
|