--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-32B/blob/main/LICENSE pipeline_tag: text-generation base_model: Qwen/Qwen3-32B --- # W8A8 INT8 Quantization of Qwen3-32B I made this for running on vLLM with Ampere GPU. On 2xRTX3090, you may set context length to upto 16384 (or 24576 if you use `--kv-cache-dtype fp8`). ## Quantization method Quantized using - Tool: [llmcompressor 0.5.2.dev22 (db959a3)](https://github.com/vllm-project/llm-compressor/commit/db959a3ec0c4a96b06698bc10e2d81016f5e8751). - System: 4x3090, DDR4 128GB + swap 32GB - Time taken: 6 hours (wall time) ```py ## modified based on the code from https://huggingface.co/nytopop/Qwen3-14B.w8a8 from transformers import AutoTokenizer, AutoModelForCausalLM from datasets import load_dataset from llmcompressor import oneshot from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.modifiers.smoothquant import SmoothQuantModifier from llmcompressor.transformers.compression.helpers import calculate_offload_device_map model_id = "Qwen/Qwen3-32B" model_out = "Qwen3-32B.w8a8" num_samples = 256 max_seq_len = 4096 tokenizer = AutoTokenizer.from_pretrained(model_id) def preprocess_fn(example): return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)} ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train") ds = ds.shuffle().select(range(num_samples)) ds = ds.map(preprocess_fn) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype="bfloat16", max_memory={0: "10GiB", 1:"10GiB", 2:"10GiB", 3:"10GiB", "cpu":"96GiB"}, ) recipe = [ SmoothQuantModifier(smoothing_strength=0.7), GPTQModifier(sequential=True,targets="Linear",scheme="W8A8",ignore=["lm_head"],dampening_frac=0.01), ] oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=max_seq_len, num_calibration_samples=num_samples, output_dir=model_out, ) ```