Update all files for BitDance-ImageNet-diffusers
Browse files
BitDance_L_1x/modeling_autoencoder.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import json
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from typing import Any, Dict
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from safetensors.torch import load_file as load_safetensors
|
| 9 |
+
|
| 10 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 11 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 12 |
+
|
| 13 |
+
try:
|
| 14 |
+
from .transformer.qae import VQModel
|
| 15 |
+
except ImportError: # pragma: no cover
|
| 16 |
+
from transformer.qae import VQModel
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class BitDanceImageNetAutoencoder(ModelMixin, ConfigMixin):
|
| 20 |
+
@register_to_config
|
| 21 |
+
def __init__(self, ddconfig: Dict[str, Any], num_codebooks: int = 4):
|
| 22 |
+
super().__init__()
|
| 23 |
+
self.runtime_model = VQModel(ddconfig, num_codebooks)
|
| 24 |
+
|
| 25 |
+
@classmethod
|
| 26 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str, *args, **kwargs):
|
| 27 |
+
del args, kwargs
|
| 28 |
+
model_dir = Path(pretrained_model_name_or_path)
|
| 29 |
+
config = json.loads((model_dir / "config.json").read_text(encoding="utf-8"))
|
| 30 |
+
model = cls(ddconfig=config["ddconfig"], num_codebooks=int(config.get("num_codebooks", 4)))
|
| 31 |
+
state = load_safetensors(model_dir / "diffusion_pytorch_model.safetensors")
|
| 32 |
+
model.runtime_model.load_state_dict(state, strict=True)
|
| 33 |
+
model.eval()
|
| 34 |
+
return model
|
| 35 |
+
|
| 36 |
+
def encode(self, x: torch.Tensor):
|
| 37 |
+
return self.runtime_model.encode(x)
|
| 38 |
+
|
| 39 |
+
def decode(self, z: torch.Tensor):
|
| 40 |
+
return self.runtime_model.decode(z)
|
| 41 |
+
|
| 42 |
+
def forward(self, z: torch.Tensor):
|
| 43 |
+
return self.decode(z)
|