--- library_name: peft base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 tags: - axolotl - generated_from_trainer model-index: - name: 3ab27b2c-001b-43ef-8445-1c972f2f32e0 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adam_epsilon: 1e-6 adapter: lora base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 bf16: true chat_template: llama3 dataloader_num_workers: 0 dataloader_pin_memory: false dataset_prepared_path: null datasets: - data_files: - bdadc8ad66cb9a94_train_data.json ds_type: json field: prompt path: /workspace/input_data/ split: train type: completion debug: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 2 flash_attention: false fp16: false gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: CheapsetZero/3ab27b2c-001b-43ef-8445-1c972f2f32e0 hub_strategy: checkpoint learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 64 lora_dropout: 0.05 lora_r: 32 lora_target_linear: true lr_scheduler: constant_with_warmup max_steps: 4000 micro_batch_size: 16 mlflow_experiment_name: /tmp/bdadc8ad66cb9a94_train_data.json model_type: AutoModelForCausalLM optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true sample_packing: false save_safetensors: true save_total_limit: 3 saves_per_epoch: 2 sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer torch_compile: false train_on_inputs: false trl: beta: 0.1 clip_rewards: true max_completion_length: 256 normalize_rewards: true num_generations: 8 reward_clip_value: 10.0 reward_funcs: - rewards_463aed43-c37f-4627-a1e3-4087047e7890.reward_long_completions - rewards_463aed43-c37f-4627-a1e3-4087047e7890.reward_short_sentences - rewards_463aed43-c37f-4627-a1e3-4087047e7890.reward_low_syllables_per_word - rewards_463aed43-c37f-4627-a1e3-4087047e7890.reward_low_difficult_words_percentage - rewards_463aed43-c37f-4627-a1e3-4087047e7890.reward_high_readability reward_weights: - 9.78318096270829 - 7.187549400576799 - 1.1055886683328564 - 0.17903499586198302 - 8.012345598633374 temperature: 1.0 use_vllm: false trust_remote_code: true val_set_size: 0.05 wandb_mode: online wandb_name: 463aed43-c37f-4627-a1e3-4087047e7890 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 463aed43-c37f-4627-a1e3-4087047e7890 warmup_steps: 100 weight_decay: 0.01 xformers_attention: false ```

# 3ab27b2c-001b-43ef-8445-1c972f2f32e0 This model is a fine-tuned version of [Vikhrmodels/Vikhr-7B-instruct_0.4](https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 100 - training_steps: 1646 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | nan | | 0.0 | 0.5 | 823 | nan | | 0.0 | 1.0 | 1646 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1