--- library_name: peft license: mit base_model: princeton-nlp/gemma-2-9b-it-SimPO tags: - axolotl - generated_from_trainer model-index: - name: 5fd61e66-d570-4ed9-b3ce-cac0736ab7f5 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adam_epsilon: 1e-6 adapter: lora base_model: princeton-nlp/gemma-2-9b-it-SimPO bf16: true chat_template: llama3 dataloader_num_workers: 0 dataloader_pin_memory: false dataset_prepared_path: null datasets: - data_files: - 42edc46e3bc9550a_train_data.json ds_type: json field: prompt path: /workspace/input_data/ split: train type: completion debug: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 2 flash_attention: false fp16: false gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: CheapsetZero/5fd61e66-d570-4ed9-b3ce-cac0736ab7f5 hub_strategy: checkpoint learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_r: 16 lora_target_linear: true lr_scheduler: constant_with_warmup max_steps: 2000 micro_batch_size: 16 mlflow_experiment_name: /tmp/42edc46e3bc9550a_train_data.json model_type: AutoModelForCausalLM optimizer: paged_adamw_8bit output_dir: miner_id_24 pad_to_sequence_len: true sample_packing: false save_safetensors: true save_total_limit: 3 saves_per_epoch: 2 sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer torch_compile: false train_on_inputs: false trl: beta: 0.1 clip_rewards: true max_completion_length: 256 normalize_rewards: true num_generations: 8 reward_clip_value: 10.0 reward_funcs: - rewards_ddf9f2bf-a25d-4111-ba3d-47fd596ab0e5.reward_high_difficult_words_percentage reward_weights: - 7.222916551876711 temperature: 1.0 use_vllm: false trust_remote_code: true val_set_size: 0.05 wandb_mode: online wandb_name: ddf9f2bf-a25d-4111-ba3d-47fd596ab0e5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ddf9f2bf-a25d-4111-ba3d-47fd596ab0e5 warmup_steps: 100 weight_decay: 0.01 xformers_attention: false ```

# 5fd61e66-d570-4ed9-b3ce-cac0736ab7f5 This model is a fine-tuned version of [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 100 - training_steps: 293 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0034 | 1 | 4.3552 | | 2.2696 | 0.5030 | 147 | 2.2771 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1