Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,9 +1,125 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
This model has been pushed to the Hub using ****:
|
| 8 |
-
- Repo: [More Information Needed]
|
| 9 |
-
- Docs: [More Information Needed]
|
|
|
|
| 1 |
---
|
| 2 |
+
language: en
|
| 3 |
+
license: mit
|
| 4 |
+
datasets:
|
| 5 |
+
- DDR
|
| 6 |
+
- FGADR
|
| 7 |
+
- IDRID
|
| 8 |
+
- MESSIDOR
|
| 9 |
+
- RETLES
|
| 10 |
+
library: torchSeg
|
| 11 |
+
model-index:
|
| 12 |
+
- name: unet_seresnext50_32x4d
|
| 13 |
+
results:
|
| 14 |
+
- task:
|
| 15 |
+
type: image-segmentation
|
| 16 |
+
dataset:
|
| 17 |
+
name: IDRID
|
| 18 |
+
type: IDRID
|
| 19 |
+
metrics:
|
| 20 |
+
- type: roc_auc
|
| 21 |
+
value: 0.6701094508171082
|
| 22 |
+
name: AUC Precision Recall - IDRID COTTON_WOOL_SPOT - COTTON_WOOL_SPOT
|
| 23 |
+
- type: roc_auc
|
| 24 |
+
value: 0.7860875129699707
|
| 25 |
+
name: AUC Precision Recall - IDRID EXUDATES - EXUDATES
|
| 26 |
+
- type: roc_auc
|
| 27 |
+
value: 0.6743975877761841
|
| 28 |
+
name: AUC Precision Recall - IDRID HEMORRHAGES - HEMORRHAGES
|
| 29 |
+
- type: roc_auc
|
| 30 |
+
value: 0.39846163988113403
|
| 31 |
+
name: AUC Precision Recall - IDRID MICROANEURYSMS - MICROANEURYSMS
|
| 32 |
+
- task:
|
| 33 |
+
type: image-segmentation
|
| 34 |
+
dataset:
|
| 35 |
+
name: FGADR
|
| 36 |
+
type: FGADR
|
| 37 |
+
metrics:
|
| 38 |
+
- type: roc_auc
|
| 39 |
+
value: 0.4449217915534973
|
| 40 |
+
name: AUC Precision Recall - FGADR COTTON_WOOL_SPOT - COTTON_WOOL_SPOT
|
| 41 |
+
- type: roc_auc
|
| 42 |
+
value: 0.6951484084129333
|
| 43 |
+
name: AUC Precision Recall - FGADR EXUDATES - EXUDATES
|
| 44 |
+
- type: roc_auc
|
| 45 |
+
value: 0.6508341431617737
|
| 46 |
+
name: AUC Precision Recall - FGADR HEMORRHAGES - HEMORRHAGES
|
| 47 |
+
- type: roc_auc
|
| 48 |
+
value: 0.2895563244819641
|
| 49 |
+
name: AUC Precision Recall - FGADR MICROANEURYSMS - MICROANEURYSMS
|
| 50 |
+
- task:
|
| 51 |
+
type: image-segmentation
|
| 52 |
+
dataset:
|
| 53 |
+
name: MESSIDOR
|
| 54 |
+
type: MESSIDOR
|
| 55 |
+
metrics:
|
| 56 |
+
- type: roc_auc
|
| 57 |
+
value: 0.3307325839996338
|
| 58 |
+
name: AUC Precision Recall - MESSIDOR COTTON_WOOL_SPOT - COTTON_WOOL_SPOT
|
| 59 |
+
- type: roc_auc
|
| 60 |
+
value: 0.7123324871063232
|
| 61 |
+
name: AUC Precision Recall - MESSIDOR EXUDATES - EXUDATES
|
| 62 |
+
- type: roc_auc
|
| 63 |
+
value: 0.3926454186439514
|
| 64 |
+
name: AUC Precision Recall - MESSIDOR HEMORRHAGES - HEMORRHAGES
|
| 65 |
+
- type: roc_auc
|
| 66 |
+
value: 0.4098129868507385
|
| 67 |
+
name: AUC Precision Recall - MESSIDOR MICROANEURYSMS - MICROANEURYSMS
|
| 68 |
+
- task:
|
| 69 |
+
type: image-segmentation
|
| 70 |
+
dataset:
|
| 71 |
+
name: DDR
|
| 72 |
+
type: DDR
|
| 73 |
+
metrics:
|
| 74 |
+
- type: roc_auc
|
| 75 |
+
value: 0.5084977746009827
|
| 76 |
+
name: AUC Precision Recall - DDR COTTON_WOOL_SPOT - COTTON_WOOL_SPOT
|
| 77 |
+
- type: roc_auc
|
| 78 |
+
value: 0.6117375493049622
|
| 79 |
+
name: AUC Precision Recall - DDR EXUDATES - EXUDATES
|
| 80 |
+
- type: roc_auc
|
| 81 |
+
value: 0.5447860956192017
|
| 82 |
+
name: AUC Precision Recall - DDR HEMORRHAGES - HEMORRHAGES
|
| 83 |
+
- type: roc_auc
|
| 84 |
+
value: 0.23405438661575317
|
| 85 |
+
name: AUC Precision Recall - DDR MICROANEURYSMS - MICROANEURYSMS
|
| 86 |
+
- task:
|
| 87 |
+
type: image-segmentation
|
| 88 |
+
dataset:
|
| 89 |
+
name: RETLES
|
| 90 |
+
type: RETLES
|
| 91 |
+
metrics:
|
| 92 |
+
- type: roc_auc
|
| 93 |
+
value: 0.5254419445991516
|
| 94 |
+
name: AUC Precision Recall - RETLES COTTON_WOOL_SPOT - COTTON_WOOL_SPOT
|
| 95 |
+
- type: roc_auc
|
| 96 |
+
value: 0.7039055824279785
|
| 97 |
+
name: AUC Precision Recall - RETLES EXUDATES - EXUDATES
|
| 98 |
+
- type: roc_auc
|
| 99 |
+
value: 0.5196094512939453
|
| 100 |
+
name: AUC Precision Recall - RETLES HEMORRHAGES - HEMORRHAGES
|
| 101 |
+
- type: roc_auc
|
| 102 |
+
value: 0.4127877354621887
|
| 103 |
+
name: AUC Precision Recall - RETLES MICROANEURYSMS - MICROANEURYSMS
|
| 104 |
---
|
| 105 |
+
# Lesions Segmentation in Fundus
|
| 106 |
+
|
| 107 |
+
## Introduction
|
| 108 |
+
We focus on the semantic segmentations of:
|
| 109 |
+
|
| 110 |
+
1. Cotton Wool Spot
|
| 111 |
+
2. Exudates
|
| 112 |
+
3. Hemmorrhages
|
| 113 |
+
4. Microaneurysms
|
| 114 |
+
|
| 115 |
+
For an easier use of the models, we refer to cleaned-up version of the code provided in the [fundus lesions toolkit](https://github.com/ClementPla/fundus-lesions-toolkit/tree/main/).
|
| 116 |
+
|
| 117 |
+
## Architecture
|
| 118 |
+
|
| 119 |
+
The model uses unet_seresnext50_32x4d as architecture. The implementation is taken from [torchSeg](https://github.com/isaaccorley/torchseg)
|
| 120 |
+
|
| 121 |
+
## Training datasets
|
| 122 |
+
|
| 123 |
+
The model was trained on the following datasets:
|
| 124 |
+
DDR, FGADR, IDRID, MESSIDOR, RETLES
|
| 125 |
|
|
|
|
|
|
|
|
|