Upload vae_model_architecture.py with huggingface_hub
Browse files- vae_model_architecture.py +35 -0
vae_model_architecture.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
# NOTE: LATENT_DIM doit être le même que celui utilisé pour l'entraînement (128)
|
| 6 |
+
class VAE(nn.Module):
|
| 7 |
+
def __init__(self, latent_dim=128):
|
| 8 |
+
super(VAE, self).__init__()
|
| 9 |
+
self.latent_dim = latent_dim
|
| 10 |
+
|
| 11 |
+
# ENCODEUR
|
| 12 |
+
self.encoder = nn.Sequential(
|
| 13 |
+
nn.Conv2d(3, 32, kernel_size=4, stride=2, padding=1), nn.ReLU(),
|
| 14 |
+
nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1), nn.ReLU(),
|
| 15 |
+
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), nn.ReLU(),
|
| 16 |
+
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), nn.ReLU(),
|
| 17 |
+
nn.Flatten()
|
| 18 |
+
)
|
| 19 |
+
self.fc_mu = nn.Linear(256 * 4 * 4, latent_dim)
|
| 20 |
+
self.fc_logvar = nn.Linear(256 * 4 * 4, latent_dim)
|
| 21 |
+
|
| 22 |
+
# DÉCODEUR
|
| 23 |
+
self.decoder_input = nn.Linear(latent_dim, 256 * 4 * 4)
|
| 24 |
+
self.decoder = nn.Sequential(
|
| 25 |
+
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1), nn.ReLU(),
|
| 26 |
+
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1), nn.ReLU(),
|
| 27 |
+
nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1), nn.ReLU(),
|
| 28 |
+
nn.ConvTranspose2d(32, 3, kernel_size=4, stride=2, padding=1),
|
| 29 |
+
nn.Tanh()
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
def decode(self, z):
|
| 33 |
+
h = self.decoder_input(z)
|
| 34 |
+
h = h.view(-1, 256, 4, 4)
|
| 35 |
+
return self.decoder(h)
|