|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
|
NUM_CLASSES = 2 |
|
|
|
|
|
class AudioClassifier(nn.Module): |
|
|
""" |
|
|
Réseau de Neurones Convolutionnels (CNN) simple pour la classification audio. |
|
|
C'est l'architecture que nous avons entraînée from scratch. |
|
|
""" |
|
|
def __init__(self): |
|
|
super(AudioClassifier, self).__init__() |
|
|
|
|
|
self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=(5, 5), padding=2) |
|
|
self.bn1 = nn.BatchNorm2d(32) |
|
|
self.pool1 = nn.MaxPool2d(kernel_size=(2, 2)) |
|
|
|
|
|
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(3, 3), padding=1) |
|
|
self.bn2 = nn.BatchNorm2d(64) |
|
|
self.pool2 = nn.MaxPool2d(kernel_size=(2, 2)) |
|
|
|
|
|
self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(3, 3), padding=1) |
|
|
self.bn3 = nn.BatchNorm2d(128) |
|
|
self.pool3 = nn.MaxPool2d(kernel_size=(2, 2)) |
|
|
|
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
|
|
|
|
self.fc1 = nn.Linear(128 * 1 * 1, NUM_CLASSES) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.pool1(F.relu(self.bn1(self.conv1(x)))) |
|
|
x = self.pool2(F.relu(self.bn2(self.conv2(x)))) |
|
|
x = self.pool3(F.relu(self.bn3(self.conv3(x)))) |
|
|
|
|
|
x = self.avgpool(x) |
|
|
|
|
|
x = torch.flatten(x, 1) |
|
|
|
|
|
return self.fc1(x) |
|
|
|