import torch import torch.nn as nn import torch.nn.functional as F # Le nombre de classes est tiré de ton dataset. NUM_CLASSES = 2 class AudioClassifier(nn.Module): """ Réseau de Neurones Convolutionnels (CNN) simple pour la classification audio. C'est l'architecture que nous avons entraînée from scratch. """ def __init__(self): super(AudioClassifier, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=(5, 5), padding=2) self.bn1 = nn.BatchNorm2d(32) self.pool1 = nn.MaxPool2d(kernel_size=(2, 2)) self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(3, 3), padding=1) self.bn2 = nn.BatchNorm2d(64) self.pool2 = nn.MaxPool2d(kernel_size=(2, 2)) self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(3, 3), padding=1) self.bn3 = nn.BatchNorm2d(128) self.pool3 = nn.MaxPool2d(kernel_size=(2, 2)) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc1 = nn.Linear(128 * 1 * 1, NUM_CLASSES) def forward(self, x): x = self.pool1(F.relu(self.bn1(self.conv1(x)))) x = self.pool2(F.relu(self.bn2(self.conv2(x)))) x = self.pool3(F.relu(self.bn3(self.conv3(x)))) x = self.avgpool(x) x = torch.flatten(x, 1) return self.fc1(x)