Update README.md
Browse files
README.md
CHANGED
|
@@ -9,21 +9,21 @@ tags:
|
|
| 9 |
datasets:
|
| 10 |
- Cnam-LMSSC/vibravox
|
| 11 |
model-index:
|
| 12 |
-
- name: EBEN(M
|
| 13 |
results:
|
| 14 |
- task:
|
| 15 |
type: speech-enhancement
|
| 16 |
name: Bandwidth Extension
|
| 17 |
dataset:
|
| 18 |
-
name: Vibravox["
|
| 19 |
type: Cnam-LMSSC/vibravox
|
| 20 |
args: fr
|
| 21 |
metrics:
|
| 22 |
- type: stoi
|
| 23 |
-
value:
|
| 24 |
name: Test STOI, in-domain training
|
| 25 |
- type: n-mos
|
| 26 |
-
value:
|
| 27 |
name: Test Noresqa-MOS, in-domain training
|
| 28 |
---
|
| 29 |
|
|
@@ -34,10 +34,10 @@ model-index:
|
|
| 34 |
# Model Card
|
| 35 |
|
| 36 |
- **Developed by:** [Cnam-LMSSC](https://huggingface.co/Cnam-LMSSC)
|
| 37 |
-
- **Model:** [EBEN(M
|
| 38 |
- **Language:** French
|
| 39 |
- **License:** MIT
|
| 40 |
-
- **Training dataset:** `
|
| 41 |
- **Samplerate for usage:** 16kHz
|
| 42 |
|
| 43 |
## Overview
|
|
@@ -62,12 +62,12 @@ import torch, torchaudio
|
|
| 62 |
from vibravox.torch_modules.dnn.eben_generator import EBENGenerator
|
| 63 |
from datasets import load_dataset
|
| 64 |
|
| 65 |
-
model = EBENGenerator.from_pretrained("Cnam-LMSSC/
|
| 66 |
-
test_dataset = load_dataset("Cnam-LMSSC/vibravox", "
|
| 67 |
|
| 68 |
-
audio_48kHz = torch.Tensor(next(iter(test_dataset))["audio.
|
| 69 |
audio_16kHz = torchaudio.functional.resample(audio_48kHz, orig_freq=48_000, new_freq=16_000)
|
| 70 |
|
| 71 |
cut_audio_16kHz = model.cut_to_valid_length(audio_16kHz[None, None, :])
|
| 72 |
-
enhanced_audio_16kHz,
|
| 73 |
```
|
|
|
|
| 9 |
datasets:
|
| 10 |
- Cnam-LMSSC/vibravox
|
| 11 |
model-index:
|
| 12 |
+
- name: EBEN(M=4,P=2,Q=4)
|
| 13 |
results:
|
| 14 |
- task:
|
| 15 |
type: speech-enhancement
|
| 16 |
name: Bandwidth Extension
|
| 17 |
dataset:
|
| 18 |
+
name: Vibravox["throat_microphone"]
|
| 19 |
type: Cnam-LMSSC/vibravox
|
| 20 |
args: fr
|
| 21 |
metrics:
|
| 22 |
- type: stoi
|
| 23 |
+
value: 0.819
|
| 24 |
name: Test STOI, in-domain training
|
| 25 |
- type: n-mos
|
| 26 |
+
value: 3.64
|
| 27 |
name: Test Noresqa-MOS, in-domain training
|
| 28 |
---
|
| 29 |
|
|
|
|
| 34 |
# Model Card
|
| 35 |
|
| 36 |
- **Developed by:** [Cnam-LMSSC](https://huggingface.co/Cnam-LMSSC)
|
| 37 |
+
- **Model:** [EBEN(M=4,P=2,Q=4)](https://github.com/jhauret/vibravox/blob/main/vibravox/torch_modules/dnn/eben_generator.py) (see [publication in IEEE TASLP](https://ieeexplore.ieee.org/document/10244161) - [arXiv link](https://arxiv.org/abs/2303.10008))
|
| 38 |
- **Language:** French
|
| 39 |
- **License:** MIT
|
| 40 |
+
- **Training dataset:** `speech_noisy` subset of [Cnam-LMSSC/vibravox](https://huggingface.co/datasets/Cnam-LMSSC/vibravox) (see [VibraVox paper on arXiV](https://arxiv.org/abs/2407.11828))
|
| 41 |
- **Samplerate for usage:** 16kHz
|
| 42 |
|
| 43 |
## Overview
|
|
|
|
| 62 |
from vibravox.torch_modules.dnn.eben_generator import EBENGenerator
|
| 63 |
from datasets import load_dataset
|
| 64 |
|
| 65 |
+
model = EBENGenerator.from_pretrained("Cnam-LMSSC/EBEN_noisy_throat_microphone")
|
| 66 |
+
test_dataset = load_dataset("Cnam-LMSSC/vibravox", "speech_noisy", split="test", streaming=True)
|
| 67 |
|
| 68 |
+
audio_48kHz = torch.Tensor(next(iter(test_dataset))["audio.throat_microphone"]["array"])
|
| 69 |
audio_16kHz = torchaudio.functional.resample(audio_48kHz, orig_freq=48_000, new_freq=16_000)
|
| 70 |
|
| 71 |
cut_audio_16kHz = model.cut_to_valid_length(audio_16kHz[None, None, :])
|
| 72 |
+
enhanced_audio_16kHz, enhanced_speech_decomposed = model(cut_audio_16kHz)
|
| 73 |
```
|