File size: 2,196 Bytes
90497a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
language:
- en
- multilingual
license: gemma
library_name: transformers
tags:
- vision-language
- retrieval
- colbert
- late-interaction
pipeline_tag: image-text-to-text
---

# Merged ColGemma3 Model

This model is a merged version of multiple ColGemma3 models using the **linear** merging technique.

## Source Models

1. [Nayana-cognitivelab/NayanaEmbed-ColGemma3-Modal-1848-colbert](https://huggingface.co/Nayana-cognitivelab/NayanaEmbed-ColGemma3-Modal-1848-colbert)
2. [Nayana-cognitivelab/NayanaEmbed-ColGemma3-MultiGPU-merged-1610-22-colbert](https://huggingface.co/Nayana-cognitivelab/NayanaEmbed-ColGemma3-MultiGPU-merged-1610-22-colbert)


## Merge Method: LINEAR

Linear interpolation: Weighted average of model parameters.

## Model Architecture

ColGemma3 is a vision-language model for late interaction retrieval:
- **Base**: Gemma3 vision-language model
- **Vision Encoder**: Processes images into patch embeddings
- **Custom Projection**: Projects embeddings to 128 dimensions
- **Retrieval**: Uses MaxSim scoring for multi-vector retrieval

## Usage

```python
from colpali_engine.models.gemma3.colgemma3 import ColGemma3, ColGemmaProcessor3
from PIL import Image
import torch

# Load model and processor
model = ColGemma3.from_pretrained("Nayana-cognitivelab/NayanaEmbed-ColGemma3-Merge-Colbert-base-nayana-linear-v1", torch_dtype=torch.bfloat16, device_map="auto")
processor = ColGemmaProcessor3.from_pretrained("Nayana-cognitivelab/NayanaEmbed-ColGemma3-Merge-Colbert-base-nayana-linear-v1")

# Process images
images = [Image.open("document.png")]
batch_images = processor.process_images(images).to(model.device)

# Process queries
queries = ["What is this document about?"]
batch_queries = processor.process_queries(queries).to(model.device)

# Generate embeddings
with torch.no_grad():
    img_embeddings = model(**batch_images)
    query_embeddings = model(**batch_queries)

# Compute similarity scores
scores = processor.score([query_embeddings[0]], [img_embeddings[0]])
```

## Citation

If you use this model, please cite the original ColGemma3 work and the source models.

---

*This model was automatically merged using [Modal](https://modal.com) infrastructure.*