DunnBC22 commited on
Commit
9677081
·
1 Parent(s): dc5edbd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -8
README.md CHANGED
@@ -12,11 +12,11 @@ metrics:
12
  model-index:
13
  - name: wav2vec2-base-is_vinyl_scratched_or_not
14
  results: []
 
 
 
15
  ---
16
 
17
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
- should probably proofread and complete it, then remove this comment. -->
19
-
20
  # wav2vec2-base-is_vinyl_scratched_or_not
21
 
22
  This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset.
@@ -29,15 +29,17 @@ It achieves the following results on the evaluation set:
29
 
30
  ## Model description
31
 
32
- More information needed
 
 
33
 
34
  ## Intended uses & limitations
35
 
36
- More information needed
37
 
38
  ## Training and evaluation data
39
 
40
- More information needed
41
 
42
  ## Training procedure
43
 
@@ -70,10 +72,9 @@ The following hyperparameters were used during training:
70
  | 0.0807 | 8.98 | 189 | 0.1088 | 0.9679 | 0.9536 | 0.9576 | 0.9496 |
71
  | 0.0744 | 9.98 | 210 | 0.1041 | 0.9752 | 0.9638 | 0.9576 | 0.9700 |
72
 
73
-
74
  ### Framework versions
75
 
76
  - Transformers 4.26.0
77
  - Pytorch 1.12.1
78
  - Datasets 2.8.0
79
- - Tokenizers 0.12.1
 
12
  model-index:
13
  - name: wav2vec2-base-is_vinyl_scratched_or_not
14
  results: []
15
+ language:
16
+ - en
17
+ pipeline_tag: audio-classification
18
  ---
19
 
 
 
 
20
  # wav2vec2-base-is_vinyl_scratched_or_not
21
 
22
  This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset.
 
29
 
30
  ## Model description
31
 
32
+ This is a binary classifier that predicts whether or not the vinyl record played in the audio sample is scratched.
33
+
34
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Audio-Projects/Classification/Vinyl%20Scratched%20or%20Not.ipynb
35
 
36
  ## Intended uses & limitations
37
 
38
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
39
 
40
  ## Training and evaluation data
41
 
42
+ Dataset Source: https://www.kaggle.com/datasets/seandaly/detecting-scratch-noise-in-vinyl-playback
43
 
44
  ## Training procedure
45
 
 
72
  | 0.0807 | 8.98 | 189 | 0.1088 | 0.9679 | 0.9536 | 0.9576 | 0.9496 |
73
  | 0.0744 | 9.98 | 210 | 0.1041 | 0.9752 | 0.9638 | 0.9576 | 0.9700 |
74
 
 
75
  ### Framework versions
76
 
77
  - Transformers 4.26.0
78
  - Pytorch 1.12.1
79
  - Datasets 2.8.0
80
+ - Tokenizers 0.12.1