--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy - f1 - recall - precision model-index: - name: wav2vec2-base-is_vinyl_scratched_or_not results: [] language: - en pipeline_tag: audio-classification --- # wav2vec2-base-is_vinyl_scratched_or_not This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1039 - Accuracy: 0.9752 - F1: 0.9638 - Recall: 0.9576 - Precision: 0.9700 ## Model description This is a binary classifier that predicts whether or not the vinyl record played in the audio sample is scratched. For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Audio-Projects/Classification/Vinyl%20Scratched%20or%20Not.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/seandaly/detecting-scratch-noise-in-vinyl-playback ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.6671 | 0.98 | 21 | 0.6235 | 0.6560 | 0.0 | 0.0 | 0.0 | | 0.4954 | 1.98 | 42 | 0.2824 | 0.9417 | 0.9095 | 0.8517 | 0.9757 | | 0.2406 | 2.98 | 63 | 0.1755 | 0.9563 | 0.9336 | 0.8941 | 0.9769 | | 0.169 | 3.98 | 84 | 0.1545 | 0.9592 | 0.9386 | 0.9068 | 0.9727 | | 0.1287 | 4.98 | 105 | 0.1249 | 0.9606 | 0.9407 | 0.9068 | 0.9772 | | 0.1102 | 5.98 | 126 | 0.1159 | 0.9723 | 0.9595 | 0.9534 | 0.9657 | | 0.0923 | 6.98 | 147 | 0.1073 | 0.9665 | 0.9516 | 0.9576 | 0.9456 | | 0.0877 | 7.98 | 168 | 0.1039 | 0.9752 | 0.9638 | 0.9576 | 0.9700 | | 0.0807 | 8.98 | 189 | 0.1088 | 0.9679 | 0.9536 | 0.9576 | 0.9496 | | 0.0744 | 9.98 | 210 | 0.1041 | 0.9752 | 0.9638 | 0.9576 | 0.9700 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.12.1