Edge-Quant/EXAONE-4.0-1.2B-Q4_K_M-GGUF

This model was converted to GGUF format from LGAI-EXAONE/EXAONE-4.0-1.2B using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

benchmark 1.2B Reasoning Mode

EXAONE 4.0 1.2B EXAONE Deep 2.4B Qwen 3 0.6B Qwen 3 1.7B SmolLM 3 3B
Model Size 1.28B 2.41B 596M 1.72B 3.08B
Hybrid Reasoning βœ… βœ… βœ… βœ…
World Knowledge
MMLU-Redux 71.5 68.9 55.6 73.9 74.8
MMLU-Pro 59.3 56.4 38.3 57.7 57.8
GPQA-Diamond 52.0 54.3 27.9 40.1 41.7
Math/Coding
AIME 2025 45.2 47.9 15.1 36.8 36.7
HMMT Feb 2025 34.0 27.3 7.0 21.8 26.0
LiveCodeBench v5 44.6 47.2 12.3 33.2 27.6
LiveCodeBench v6 45.3 43.1 16.4 29.9 29.1
Instruction Following
IFEval 67.8 71.0 59.2 72.5 71.2
Multi-IF (EN) 53.9 54.5 37.5 53.5 47.5
Agentic Tool Use
BFCL-v3 52.9 N/A 46.4 56.6 37.1
Tau-Bench (Airline) 20.5 N/A 22.0 31.0 37.0
Tau-Bench (Retail) 28.1 N/A 3.3 6.5 5.4
Multilinguality
KMMLU-Pro 42.7 24.6 21.6 38.3 30.5
KMMLU-Redux 46.9 25.0 24.5 38.0 33.7
KSM 60.6 60.9 22.8 52.9 49.7
MMMLU (ES) 62.4 51.4 48.8 64.5 64.7
MATH500 (ES) 88.8 84.5 70.6 87.9 87.5

1.2B Non-Reasoning Mode

EXAONE 4.0 1.2B Qwen 3 0.6B Gemma 3 1B Qwen 3 1.7B SmolLM 3 3B
Model Size 1.28B 596M 1.00B 1.72B 3.08B
Hybrid Reasoning βœ… βœ… βœ… βœ…
World Knowledge
MMLU-Redux 66.9 44.6 40.9 63.4 65.0
MMLU-Pro 52.0 26.6 14.7 43.7 43.6
GPQA-Diamond 40.1 22.9 19.2 28.6 35.7
Math/Coding
AIME 2025 23.5 2.6 2.1 9.8 9.3
HMMT Feb 2025 13.0 1.0 1.5 5.1 4.7
LiveCodeBench v5 26.4 3.6 1.8 11.6 11.4
LiveCodeBench v6 30.1 6.9 2.3 16.6 20.6
Instruction Following
IFEval 74.7 54.5 80.2 68.2 76.7
Multi-IF (EN) 62.1 37.5 32.5 51.0 51.9
Long Context
HELMET 41.2 21.1 N/A 33.8 38.6
RULER 77.4 55.1 N/A 65.9 66.3
LongBench v1 36.9 32.4 N/A 41.9 39.9
Agentic Tool Use
BFCL-v3 55.7 44.1 N/A 52.2 47.3
Tau-Bench (Airline) 10.0 31.5 N/A 13.5 38.0
Tau-Bench (Retail) 21.7 5.7 N/A 4.6 6.7
Multilinguality
KMMLU-Pro 37.5 24.6 9.7 29.5 27.6
KMMLU-Redux 40.4 22.8 19.4 29.8 26.4
KSM 26.3 0.1 22.8 16.3 16.1
Ko-LongBench 69.8 16.4 N/A 57.1 15.7
MMMLU (ES) 54.6 39.5 35.9 54.3 55.1
MATH500 (ES) 71.2 38.5 41.2 66.0 62.4
WMT24++ (ES) 65.9 58.2 76.9 76.7 84.0

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo Edge-Quant/EXAONE-4.0-1.2B-Q4_K_M-GGUF --hf-file exaone-4.0-1.2b-q4_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo Edge-Quant/EXAONE-4.0-1.2B-Q4_K_M-GGUF --hf-file exaone-4.0-1.2b-q4_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo Edge-Quant/EXAONE-4.0-1.2B-Q4_K_M-GGUF --hf-file exaone-4.0-1.2b-q4_k_m.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo Edge-Quant/EXAONE-4.0-1.2B-Q4_K_M-GGUF --hf-file exaone-4.0-1.2b-q4_k_m.gguf -c 2048
Downloads last month
13
GGUF
Model size
1B params
Architecture
exaone4
Hardware compatibility
Log In to view the estimation

4-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for Edge-Quant/EXAONE-4.0-1.2B-Q4_K_M-GGUF

Quantized
(27)
this model