File size: 12,450 Bytes
941cc12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# -*- coding: utf-8 -*-
# Copyright 2026 EngineerGL Research.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, List, Union
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast
from transformers import GenerationMixin
from configuration_alinlight import AlinlightConfig # Импортируем конфиг из соседнего файла

class AlinlightRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.eps = eps
    def forward(self, x):
        input_dtype = x.dtype
        x = x.to(torch.float32)
        variance = x.pow(2).mean(-1, keepdim=True)
        x = x * torch.rsqrt(variance + self.eps)
        return self.weight * x.to(input_dtype)

class AlinlightRotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
        super().__init__()
        self.dim = dim
        self.base = base
        self.max_position_embeddings = max_position_embeddings
        self.scaling_factor = scaling_factor
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self._set_cos_sin_cache(seq_len=max_position_embeddings, device=device, dtype=torch.get_default_dtype())

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        t = torch.arange(seq_len, device=device, dtype=torch.int64).type_as(self.inv_freq)
        t = t / self.scaling_factor
        freqs = torch.outer(t, self.inv_freq)
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        if seq_len > self.cos_cached.shape[0]:
             self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
        return self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype)

def rotate_half(x):
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)

def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    cos = cos[position_ids].unsqueeze(unsqueeze_dim)
    sin = sin[position_ids].unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed

class AlinlightMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = nn.SiLU()

    def forward(self, x):
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))

class AlinlightAttention(nn.Module):
    def __init__(self, config, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.sliding_window = config.sliding_window
        self.attention_dropout = config.attention_dropout

        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

    def forward(self, hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, cos_sin=None):
        bsz, q_len, _ = hidden_states.size()
        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)
        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        if cos_sin is not None:
            cos, sin = cos_sin
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

        if past_key_value is not None:
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)

        # Truncation logic for sliding window
        if self.sliding_window is not None and key_states.shape[2] > self.sliding_window:
            key_states = key_states[:, :, -self.sliding_window:, :]
            value_states = value_states[:, :, -self.sliding_window:, :]

        past_key_value = (key_states, value_states) if use_cache else None
        
        if self.num_key_value_groups > 1:
            key_states = key_states[:, :, None, :, :].expand(bsz, self.num_key_value_heads, self.num_key_value_groups, key_states.shape[-2], self.head_dim).reshape(bsz, self.num_heads, key_states.shape[-2], self.head_dim)
            value_states = value_states[:, :, None, :, :].expand(bsz, self.num_key_value_heads, self.num_key_value_groups, value_states.shape[-2], self.head_dim).reshape(bsz, self.num_heads, value_states.shape[-2], self.head_dim)

        # Use Scaled Dot Product Attention
        attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=None, dropout_p=0.0, is_causal=True)
        attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, self.hidden_size)
        return self.o_proj(attn_output), None, past_key_value

class AlinlightDecoderLayer(nn.Module):
    def __init__(self, config, layer_idx: int):
        super().__init__()
        self.self_attn = AlinlightAttention(config, layer_idx=layer_idx)
        self.mlp = AlinlightMLP(config)
        self.input_layernorm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(self, hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, cos_sin=None):
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states, _, present_key_value = self.self_attn(hidden_states, attention_mask, position_ids, past_key_value, output_attentions, use_cache, cos_sin)
        hidden_states = residual + hidden_states
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states
        return hidden_states, None, present_key_value

class AlinlightModel(PreTrainedModel):
    config_class = AlinlightConfig
    def __init__(self, config: AlinlightConfig):
        super().__init__(config)
        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
        self.layers = nn.ModuleList([AlinlightDecoderLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)])
        self.norm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        
        scaling_factor = 1.0
        if config.rope_scaling and config.rope_scaling.get("type") == "linear":
             scaling_factor = config.rope_scaling.get("factor", 1.0)
             
        self.rotary_emb = AlinlightRotaryEmbedding(config.hidden_size // config.num_attention_heads, max_position_embeddings=config.max_position_embeddings, base=config.rope_theta, scaling_factor=scaling_factor)

    def forward(self, input_ids=None, past_key_values=None, use_cache=None, **kwargs):
        if input_ids is not None:
            inputs_embeds = self.embed_tokens(input_ids)
        else:
             inputs_embeds = kwargs.get("inputs_embeds")

        seq_len = inputs_embeds.shape[1]
        if past_key_values is not None:
             seq_len += past_key_values[0][0].shape[2]
             
        cos, sin = self.rotary_emb(inputs_embeds, seq_len=seq_len)
        
        position_ids = kwargs.get("position_ids")
        if position_ids is None:
             position_ids = torch.arange(seq_len - inputs_embeds.shape[1], seq_len, dtype=torch.long, device=inputs_embeds.device)
             position_ids = position_ids.unsqueeze(0).expand(inputs_embeds.shape[0], -1)

        hidden_states = inputs_embeds
        next_decoder_cache = () if use_cache else None

        for idx, layer in enumerate(self.layers):
            past_key_value = past_key_values[idx] if past_key_values is not None else None
            layer_outputs = layer(hidden_states, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, cos_sin=(cos, sin))
            hidden_states = layer_outputs[0]
            if use_cache:
                next_decoder_cache += (layer_outputs[2],)

        hidden_states = self.norm(hidden_states)
        
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_decoder_cache
        )

class AlinlightForCausalLM(PreTrainedModel, GenerationMixin):
    config_class = AlinlightConfig
    _keys_to_ignore_on_load_missing = ["model.rotary_emb.inv_freq"]

    def __init__(self, config):
        super().__init__(config)
        self.model = AlinlightModel(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.lm_head.weight = self.model.embed_tokens.weight

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
        if past_key_values:
            input_ids = input_ids[:, -1:]
        
        position_ids = kwargs.get("position_ids", None)
        if position_ids is None:
            if past_key_values:
                 past_length = past_key_values[0][0].shape[2]
                 position_ids = torch.tensor([[past_length]], dtype=torch.long, device=input_ids.device)
            else:
                 position_ids = torch.arange(input_ids.shape[1], dtype=torch.long, device=input_ids.device).unsqueeze(0)

        return {
            "input_ids": input_ids,
            "past_key_values": past_key_values,
            "use_cache": True,
            "position_ids": position_ids
        }

    def forward(self, input_ids=None, past_key_values=None, labels=None, **kwargs):
        outputs = self.model(input_ids=input_ids, past_key_values=past_key_values, **kwargs)
        hidden_states = outputs.last_hidden_state
        logits = self.lm_head(hidden_states)
        
        loss = None
        if labels is not None:
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            loss = F.cross_entropy(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))

        return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values)