File size: 12,450 Bytes
941cc12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
# -*- coding: utf-8 -*-
# Copyright 2026 EngineerGL Research.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, List, Union
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast
from transformers import GenerationMixin
from configuration_alinlight import AlinlightConfig # Импортируем конфиг из соседнего файла
class AlinlightRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.eps = eps
def forward(self, x):
input_dtype = x.dtype
x = x.to(torch.float32)
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.eps)
return self.weight * x.to(input_dtype)
class AlinlightRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
super().__init__()
self.dim = dim
self.base = base
self.max_position_embeddings = max_position_embeddings
self.scaling_factor = scaling_factor
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
self._set_cos_sin_cache(seq_len=max_position_embeddings, device=device, dtype=torch.get_default_dtype())
def _set_cos_sin_cache(self, seq_len, device, dtype):
t = torch.arange(seq_len, device=device, dtype=torch.int64).type_as(self.inv_freq)
t = t / self.scaling_factor
freqs = torch.outer(t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
if seq_len > self.cos_cached.shape[0]:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype)
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class AlinlightMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = nn.SiLU()
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class AlinlightAttention(nn.Module):
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.sliding_window = config.sliding_window
self.attention_dropout = config.attention_dropout
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
def forward(self, hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, cos_sin=None):
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if cos_sin is not None:
cos, sin = cos_sin
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
# Truncation logic for sliding window
if self.sliding_window is not None and key_states.shape[2] > self.sliding_window:
key_states = key_states[:, :, -self.sliding_window:, :]
value_states = value_states[:, :, -self.sliding_window:, :]
past_key_value = (key_states, value_states) if use_cache else None
if self.num_key_value_groups > 1:
key_states = key_states[:, :, None, :, :].expand(bsz, self.num_key_value_heads, self.num_key_value_groups, key_states.shape[-2], self.head_dim).reshape(bsz, self.num_heads, key_states.shape[-2], self.head_dim)
value_states = value_states[:, :, None, :, :].expand(bsz, self.num_key_value_heads, self.num_key_value_groups, value_states.shape[-2], self.head_dim).reshape(bsz, self.num_heads, value_states.shape[-2], self.head_dim)
# Use Scaled Dot Product Attention
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=None, dropout_p=0.0, is_causal=True)
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, self.hidden_size)
return self.o_proj(attn_output), None, past_key_value
class AlinlightDecoderLayer(nn.Module):
def __init__(self, config, layer_idx: int):
super().__init__()
self.self_attn = AlinlightAttention(config, layer_idx=layer_idx)
self.mlp = AlinlightMLP(config)
self.input_layernorm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(self, hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, cos_sin=None):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, _, present_key_value = self.self_attn(hidden_states, attention_mask, position_ids, past_key_value, output_attentions, use_cache, cos_sin)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states, None, present_key_value
class AlinlightModel(PreTrainedModel):
config_class = AlinlightConfig
def __init__(self, config: AlinlightConfig):
super().__init__(config)
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.layers = nn.ModuleList([AlinlightDecoderLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)])
self.norm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
scaling_factor = 1.0
if config.rope_scaling and config.rope_scaling.get("type") == "linear":
scaling_factor = config.rope_scaling.get("factor", 1.0)
self.rotary_emb = AlinlightRotaryEmbedding(config.hidden_size // config.num_attention_heads, max_position_embeddings=config.max_position_embeddings, base=config.rope_theta, scaling_factor=scaling_factor)
def forward(self, input_ids=None, past_key_values=None, use_cache=None, **kwargs):
if input_ids is not None:
inputs_embeds = self.embed_tokens(input_ids)
else:
inputs_embeds = kwargs.get("inputs_embeds")
seq_len = inputs_embeds.shape[1]
if past_key_values is not None:
seq_len += past_key_values[0][0].shape[2]
cos, sin = self.rotary_emb(inputs_embeds, seq_len=seq_len)
position_ids = kwargs.get("position_ids")
if position_ids is None:
position_ids = torch.arange(seq_len - inputs_embeds.shape[1], seq_len, dtype=torch.long, device=inputs_embeds.device)
position_ids = position_ids.unsqueeze(0).expand(inputs_embeds.shape[0], -1)
hidden_states = inputs_embeds
next_decoder_cache = () if use_cache else None
for idx, layer in enumerate(self.layers):
past_key_value = past_key_values[idx] if past_key_values is not None else None
layer_outputs = layer(hidden_states, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, cos_sin=(cos, sin))
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2],)
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache
)
class AlinlightForCausalLM(PreTrainedModel, GenerationMixin):
config_class = AlinlightConfig
_keys_to_ignore_on_load_missing = ["model.rotary_emb.inv_freq"]
def __init__(self, config):
super().__init__(config)
self.model = AlinlightModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.lm_head.weight = self.model.embed_tokens.weight
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
if past_key_values:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if position_ids is None:
if past_key_values:
past_length = past_key_values[0][0].shape[2]
position_ids = torch.tensor([[past_length]], dtype=torch.long, device=input_ids.device)
else:
position_ids = torch.arange(input_ids.shape[1], dtype=torch.long, device=input_ids.device).unsqueeze(0)
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"use_cache": True,
"position_ids": position_ids
}
def forward(self, input_ids=None, past_key_values=None, labels=None, **kwargs):
outputs = self.model(input_ids=input_ids, past_key_values=past_key_values, **kwargs)
hidden_states = outputs.last_hidden_state
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss = F.cross_entropy(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values) |