GYP666 commited on
Commit
22a1ed6
Β·
verified Β·
1 Parent(s): 5b1bc2f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -1,19 +1,19 @@
1
  ---
2
  license: apache-2.0
3
  ---
4
- # Video-BLADE: Block-Sparse Attention Meets Step Distillation for Efficient Video Generation
5
 
6
  <div align="center">
7
 
8
- [πŸ“– Paper](https://arxiv.org/abs/2508.10774) | [πŸš€ Homepage](http://ziplab.co/BLADE-Homepage/) | [πŸ’Ύ Models](https://huggingface.co/GYP666/VIDEO-BLADE) | [πŸ“– δΈ­ζ–‡ι˜…θ―»](README_zh.md)
9
 
10
  </div>
11
 
12
- Video-BLADE is a data-free framework for efficient video generation. By jointly training an adaptive sparse attention mechanism with a step distillation technique, it achieves a significant acceleration in video generation models. This project combines a block-sparse attention mechanism with step distillation, reducing the number of inference steps from 50 to just 8 while maintaining high-quality generation.
13
 
14
  ## πŸ“’ News
15
 
16
- - **[Aug 2025]** πŸŽ‰ The code and pre-trained models for Video-BLADE have been released\!
17
  - **[Aug 2025]** πŸ“ Support for two mainstream video generation models, CogVideoX-5B and WanX-1.3B, is now available.
18
  - **[Aug 2025]** ⚑ Achieved high-quality video generation in just 8 steps, a significant speedup compared to the 50-step baseline.
19
 
@@ -38,8 +38,8 @@ Video-BLADE is a data-free framework for efficient video generation. By jointly
38
  1. **Clone the repository**
39
 
40
  ```bash
41
- git clone https://github.com/Tacossp/VIDEO-BLADE
42
- cd VIDEO-BLADE
43
  ```
44
 
45
  2. **Install dependencies**
@@ -84,13 +84,13 @@ Please download the following base model weights and place them in the specified
84
  git clone https://huggingface.co/Wan-AI/Wan2.1-T2V-1.3B-Diffusers wanx/wan1.3b
85
  ```
86
 
87
- ### Pre-trained Video-BLADE Weights
88
 
89
- We provide pre-trained weights for Video-BLADE:
90
 
91
  ```bash
92
  # Download pre-trained weights
93
- git clone https://huggingface.co/GYP666/VIDEO-BLADE pretrained_weights
94
  ```
95
 
96
  ### Weight Directory Structure
@@ -98,12 +98,12 @@ git clone https://huggingface.co/GYP666/VIDEO-BLADE pretrained_weights
98
  Ensure your directory structure for weights is as follows:
99
 
100
  ```
101
- VIDEO-BLADE/
102
  β”œβ”€β”€ cogvideox/
103
  β”‚ └── CogVideoX-5b/ # Base model weights for CogVideoX
104
  β”œβ”€β”€ wanx/
105
  β”‚ └── wan1.3b/ # Base model weights for WanX
106
- └── pretrained_weights/ # Pre-trained weights for Video-BLADE
107
  β”œβ”€β”€ BLADE_cogvideox_weight/
108
  └── BLADE_wanx_weight/
109
  ```
@@ -219,7 +219,7 @@ bash train_wanx_tdm.sh
219
  ## πŸ“Š Project Structure
220
 
221
  ```
222
- VIDEO-BLADE/
223
  β”œβ”€β”€ README.md # Project documentation
224
  β”œβ”€β”€ requirements.txt # List of Python dependencies
225
  β”‚
@@ -266,11 +266,11 @@ VIDEO-BLADE/
266
 
267
  ## πŸ“„ Citation
268
 
269
- If you use Video-BLADE in your research, please cite our work:
270
 
271
  ```bibtex
272
  @misc{gu2025videobladeblocksparseattentionmeets,
273
- title={Video-BLADE: Block-Sparse Attention Meets Step Distillation for Efficient Video Generation},
274
  author={Youping Gu and Xiaolong Li and Yuhao Hu and Bohan Zhuang},
275
  year={2025},
276
  eprint={2508.10774},
@@ -285,4 +285,4 @@ If you use Video-BLADE in your research, please cite our work:
285
  For any questions or suggestions, feel free to:
286
 
287
  - Contact Youping Gu at youpgu71@gmail.com.
288
- - Submit an issue on our [Github page](https://github.com/ziplab/VIDEO-BLADE/issues).
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+ # BLADE: Block-Sparse Attention Meets Step Distillation for Efficient Video Generation
5
 
6
  <div align="center">
7
 
8
+ [πŸ“– Paper](https://arxiv.org/abs/2508.10774) | [πŸš€ Homepage](http://ziplab.co/BLADE-Homepage/) | [πŸ’Ύ Models](https://huggingface.co/GYP666/BLADE) | [πŸ“– δΈ­ζ–‡ι˜…θ―»](README_zh.md)
9
 
10
  </div>
11
 
12
+ BLADE is a data-free framework for efficient video generation. By jointly training an adaptive sparse attention mechanism with a step distillation technique, it achieves a significant acceleration in video generation models. This project combines a block-sparse attention mechanism with step distillation, reducing the number of inference steps from 50 to just 8 while maintaining high-quality generation.
13
 
14
  ## πŸ“’ News
15
 
16
+ - **[Aug 2025]** πŸŽ‰ The code and pre-trained models for BLADE have been released\!
17
  - **[Aug 2025]** πŸ“ Support for two mainstream video generation models, CogVideoX-5B and WanX-1.3B, is now available.
18
  - **[Aug 2025]** ⚑ Achieved high-quality video generation in just 8 steps, a significant speedup compared to the 50-step baseline.
19
 
 
38
  1. **Clone the repository**
39
 
40
  ```bash
41
+ git clone https://github.com/Tacossp/BLADE
42
+ cd BLADE
43
  ```
44
 
45
  2. **Install dependencies**
 
84
  git clone https://huggingface.co/Wan-AI/Wan2.1-T2V-1.3B-Diffusers wanx/wan1.3b
85
  ```
86
 
87
+ ### Pre-trained BLADE Weights
88
 
89
+ We provide pre-trained weights for BLADE:
90
 
91
  ```bash
92
  # Download pre-trained weights
93
+ git clone https://huggingface.co/GYP666/BLADE pretrained_weights
94
  ```
95
 
96
  ### Weight Directory Structure
 
98
  Ensure your directory structure for weights is as follows:
99
 
100
  ```
101
+ BLADE/
102
  β”œβ”€β”€ cogvideox/
103
  β”‚ └── CogVideoX-5b/ # Base model weights for CogVideoX
104
  β”œβ”€β”€ wanx/
105
  β”‚ └── wan1.3b/ # Base model weights for WanX
106
+ └── pretrained_weights/ # Pre-trained weights for BLADE
107
  β”œβ”€β”€ BLADE_cogvideox_weight/
108
  └── BLADE_wanx_weight/
109
  ```
 
219
  ## πŸ“Š Project Structure
220
 
221
  ```
222
+ BLADE/
223
  β”œβ”€β”€ README.md # Project documentation
224
  β”œβ”€β”€ requirements.txt # List of Python dependencies
225
  β”‚
 
266
 
267
  ## πŸ“„ Citation
268
 
269
+ If you use BLADE in your research, please cite our work:
270
 
271
  ```bibtex
272
  @misc{gu2025videobladeblocksparseattentionmeets,
273
+ title={BLADE: Block-Sparse Attention Meets Step Distillation for Efficient Video Generation},
274
  author={Youping Gu and Xiaolong Li and Yuhao Hu and Bohan Zhuang},
275
  year={2025},
276
  eprint={2508.10774},
 
285
  For any questions or suggestions, feel free to:
286
 
287
  - Contact Youping Gu at youpgu71@gmail.com.
288
+ - Submit an issue on our [Github page](https://github.com/ziplab/BLADE/issues).