Create modeling_octagon.py
Browse files- modeling_octagon.py +241 -0
modeling_octagon.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
class OctagonConfig(PretrainedConfig):
|
| 6 |
+
model_type = "octagon"
|
| 7 |
+
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
vocab_size=30522,
|
| 11 |
+
hidden_size=768,
|
| 12 |
+
num_hidden_layers=8, # Octagon has 8 sides!
|
| 13 |
+
num_attention_heads=8,
|
| 14 |
+
intermediate_size=3072,
|
| 15 |
+
hidden_act="gelu",
|
| 16 |
+
hidden_dropout_prob=0.1,
|
| 17 |
+
attention_probs_dropout_prob=0.1,
|
| 18 |
+
max_position_embeddings=512,
|
| 19 |
+
type_vocab_size=2,
|
| 20 |
+
initializer_range=0.02,
|
| 21 |
+
layer_norm_eps=1e-12,
|
| 22 |
+
pad_token_id=0,
|
| 23 |
+
position_embedding_type="absolute",
|
| 24 |
+
classifier_dropout=None,
|
| 25 |
+
num_labels=2,
|
| 26 |
+
**kwargs
|
| 27 |
+
):
|
| 28 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
| 29 |
+
self.vocab_size = vocab_size
|
| 30 |
+
self.hidden_size = hidden_size
|
| 31 |
+
self.num_hidden_layers = num_hidden_layers
|
| 32 |
+
self.num_attention_heads = num_attention_heads
|
| 33 |
+
self.intermediate_size = intermediate_size
|
| 34 |
+
self.hidden_act = hidden_act
|
| 35 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
| 36 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
| 37 |
+
self.max_position_embeddings = max_position_embeddings
|
| 38 |
+
self.type_vocab_size = type_vocab_size
|
| 39 |
+
self.initializer_range = initializer_range
|
| 40 |
+
self.layer_norm_eps = layer_norm_eps
|
| 41 |
+
self.position_embedding_type = position_embedding_type
|
| 42 |
+
self.classifier_dropout = classifier_dropout
|
| 43 |
+
self.num_labels = num_labels
|
| 44 |
+
|
| 45 |
+
class OctagonEmbeddings(nn.Module):
|
| 46 |
+
def __init__(self, config):
|
| 47 |
+
super().__init__()
|
| 48 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
| 49 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
| 50 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
| 51 |
+
|
| 52 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 53 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 54 |
+
|
| 55 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
| 56 |
+
|
| 57 |
+
def forward(self, input_ids=None, token_type_ids=None, position_ids=None):
|
| 58 |
+
seq_length = input_ids.size(1)
|
| 59 |
+
|
| 60 |
+
if position_ids is None:
|
| 61 |
+
position_ids = self.position_ids[:, :seq_length]
|
| 62 |
+
|
| 63 |
+
if token_type_ids is None:
|
| 64 |
+
token_type_ids = torch.zeros_like(input_ids)
|
| 65 |
+
|
| 66 |
+
word_embeddings = self.word_embeddings(input_ids)
|
| 67 |
+
position_embeddings = self.position_embeddings(position_ids)
|
| 68 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 69 |
+
|
| 70 |
+
embeddings = word_embeddings + position_embeddings + token_type_embeddings
|
| 71 |
+
embeddings = self.LayerNorm(embeddings)
|
| 72 |
+
embeddings = self.dropout(embeddings)
|
| 73 |
+
return embeddings
|
| 74 |
+
|
| 75 |
+
class OctagonSelfAttention(nn.Module):
|
| 76 |
+
def __init__(self, config):
|
| 77 |
+
super().__init__()
|
| 78 |
+
self.num_attention_heads = config.num_attention_heads
|
| 79 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
| 80 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 81 |
+
|
| 82 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
| 83 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
| 84 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
| 85 |
+
|
| 86 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 87 |
+
|
| 88 |
+
def transpose_for_scores(self, x):
|
| 89 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
| 90 |
+
x = x.view(*new_x_shape)
|
| 91 |
+
return x.permute(0, 2, 1, 3)
|
| 92 |
+
|
| 93 |
+
def forward(self, hidden_states):
|
| 94 |
+
query_layer = self.transpose_for_scores(self.query(hidden_states))
|
| 95 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 96 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 97 |
+
|
| 98 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 99 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
| 100 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
| 101 |
+
attention_probs = self.dropout(attention_probs)
|
| 102 |
+
|
| 103 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
| 104 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
| 105 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
| 106 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
| 107 |
+
return context_layer
|
| 108 |
+
|
| 109 |
+
class OctagonSelfOutput(nn.Module):
|
| 110 |
+
def __init__(self, config):
|
| 111 |
+
super().__init__()
|
| 112 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 113 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 114 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 115 |
+
|
| 116 |
+
def forward(self, hidden_states, input_tensor):
|
| 117 |
+
hidden_states = self.dense(hidden_states)
|
| 118 |
+
hidden_states = self.dropout(hidden_states)
|
| 119 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 120 |
+
return hidden_states
|
| 121 |
+
|
| 122 |
+
class OctagonAttention(nn.Module):
|
| 123 |
+
def __init__(self, config):
|
| 124 |
+
super().__init__()
|
| 125 |
+
self.self = OctagonSelfAttention(config)
|
| 126 |
+
self.output = OctagonSelfOutput(config)
|
| 127 |
+
|
| 128 |
+
def forward(self, hidden_states):
|
| 129 |
+
self_outputs = self.self(hidden_states)
|
| 130 |
+
attention_output = self.output(self_outputs, hidden_states)
|
| 131 |
+
return attention_output
|
| 132 |
+
|
| 133 |
+
class OctagonIntermediate(nn.Module):
|
| 134 |
+
def __init__(self, config):
|
| 135 |
+
super().__init__()
|
| 136 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 137 |
+
self.intermediate_act_fn = nn.GELU()
|
| 138 |
+
|
| 139 |
+
def forward(self, hidden_states):
|
| 140 |
+
hidden_states = self.dense(hidden_states)
|
| 141 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
| 142 |
+
return hidden_states
|
| 143 |
+
|
| 144 |
+
class OctagonOutput(nn.Module):
|
| 145 |
+
def __init__(self, config):
|
| 146 |
+
super().__init__()
|
| 147 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 148 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 149 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 150 |
+
|
| 151 |
+
def forward(self, hidden_states, input_tensor):
|
| 152 |
+
hidden_states = self.dense(hidden_states)
|
| 153 |
+
hidden_states = self.dropout(hidden_states)
|
| 154 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 155 |
+
return hidden_states
|
| 156 |
+
|
| 157 |
+
class OctagonLayer(nn.Module):
|
| 158 |
+
def __init__(self, config):
|
| 159 |
+
super().__init__()
|
| 160 |
+
self.attention = OctagonAttention(config)
|
| 161 |
+
self.intermediate = OctagonIntermediate(config)
|
| 162 |
+
self.output = OctagonOutput(config)
|
| 163 |
+
|
| 164 |
+
def forward(self, hidden_states):
|
| 165 |
+
attention_output = self.attention(hidden_states)
|
| 166 |
+
intermediate_output = self.intermediate(attention_output)
|
| 167 |
+
layer_output = self.output(intermediate_output, attention_output)
|
| 168 |
+
return layer_output
|
| 169 |
+
|
| 170 |
+
class OctagonEncoder(nn.Module):
|
| 171 |
+
def __init__(self, config):
|
| 172 |
+
super().__init__()
|
| 173 |
+
self.layer = nn.ModuleList([OctagonLayer(config) for _ in range(config.num_hidden_layers)])
|
| 174 |
+
|
| 175 |
+
def forward(self, hidden_states):
|
| 176 |
+
for layer_module in self.layer:
|
| 177 |
+
hidden_states = layer_module(hidden_states)
|
| 178 |
+
return hidden_states
|
| 179 |
+
|
| 180 |
+
class OctagonModel(PreTrainedModel):
|
| 181 |
+
config_class = OctagonConfig
|
| 182 |
+
|
| 183 |
+
def __init__(self, config):
|
| 184 |
+
super().__init__(config)
|
| 185 |
+
self.config = config
|
| 186 |
+
self.embeddings = OctagonEmbeddings(config)
|
| 187 |
+
self.encoder = OctagonEncoder(config)
|
| 188 |
+
self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
|
| 189 |
+
self.tanh = nn.Tanh()
|
| 190 |
+
|
| 191 |
+
self.post_init()
|
| 192 |
+
|
| 193 |
+
def forward(self, input_ids=None, token_type_ids=None, position_ids=None):
|
| 194 |
+
if input_ids is not None:
|
| 195 |
+
input_shape = input_ids.size()
|
| 196 |
+
else:
|
| 197 |
+
raise ValueError("You have to specify input_ids")
|
| 198 |
+
|
| 199 |
+
embedding_output = self.embeddings(
|
| 200 |
+
input_ids=input_ids,
|
| 201 |
+
token_type_ids=token_type_ids,
|
| 202 |
+
position_ids=position_ids
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
encoder_outputs = self.encoder(embedding_output)
|
| 206 |
+
pooled_output = self.pooler(encoder_outputs[:, 0])
|
| 207 |
+
pooled_output = self.tanh(pooled_output)
|
| 208 |
+
|
| 209 |
+
return encoder_outputs, pooled_output
|
| 210 |
+
|
| 211 |
+
class OctagonForSequenceClassification(PreTrainedModel):
|
| 212 |
+
config_class = OctagonConfig
|
| 213 |
+
|
| 214 |
+
def __init__(self, config):
|
| 215 |
+
super().__init__(config)
|
| 216 |
+
self.num_labels = config.num_labels
|
| 217 |
+
self.octagon = OctagonModel(config)
|
| 218 |
+
classifier_dropout = (
|
| 219 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 220 |
+
)
|
| 221 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 222 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 223 |
+
|
| 224 |
+
self.post_init()
|
| 225 |
+
|
| 226 |
+
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, labels=None):
|
| 227 |
+
_, pooled_output = self.octagon(
|
| 228 |
+
input_ids=input_ids,
|
| 229 |
+
token_type_ids=token_type_ids,
|
| 230 |
+
position_ids=position_ids
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
pooled_output = self.dropout(pooled_output)
|
| 234 |
+
logits = self.classifier(pooled_output)
|
| 235 |
+
|
| 236 |
+
loss = None
|
| 237 |
+
if labels is not None:
|
| 238 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 239 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 240 |
+
|
| 241 |
+
return {"loss": loss, "logits": logits}
|