import os import pandas as pd import re import glob from tqdm import tqdm import datetime import openai import argparse import io def summarize_results(results_dirs, output_csv, model, no_llm = False): client = openai.OpenAI( api_key = os.environ.get('CBORG_API_KEY'), base_url = 'https://api.cborg.lbl.gov' ) error_description_prompt = ( "You are an expert assistant. Below is a comprehensive log of a multi-step workflow from a high energy physics analysis framework.\n\n" "The workflow includes:\n" "- A user provides an analysis task prompt.\n" "- A supervisor agent breaks down the task and instructs a coder agent.\n" "- The coder agent generates code, which is executed.\n" "- The supervisor reviews results and may iterate with the coder to fix issues until the task is complete.\n" "The log contains the user prompt, supervisor/coder dialogue, code, and execution outputs for all iterations.\n\n" "Your task: Summarize all errors encountered during the entire workflow in clear, concise language. " "Do NOT repeat or quote the log, prompt, or instructions. " "Do NOT include code, explanations, or any text except your error summary.\n\n" "For each error, use the following structure:\n" "- Error Type: [brief description of the nature of the error]\n" "- Cause: [if identifiable]\n" "- Responsible Party: [user, supervisor, coder, or external]\n" "- Consequence: [result or impact]\n" "- Context: [any important context]\n" "- Workflow Response: [Did the supervisor diagnose and address it?" "Did the coder attempt a fix? Was the fix successful, unsuccessful, or misdiagnosed?" "Was the error ignored or did it persist? Summarize the recovery process and its outcome for each error.]\n" "List each error as a separate bullet point using this template.\n" "If there is a validation error, look in the validation log and use the same structure to identify the causes of the validation error." "If no errors occurred, respond: 'No errors found.'\n" "Do NOT include code, explanations, or any text except your error summary.\n" "Limit your entire summary to 3000 characters. " "If no errors occurred, respond: 'No errors found.'\n\n" ) results = [] for results_dir in results_dirs: for name in tqdm(os.listdir(results_dir), desc=f"generating error descriptions for {results_dir}"): output_dir = os.path.join(results_dir, name) if os.path.isdir(output_dir): # Extract config (everything before "_step") config_match = re.match(r'^(.*?)_step\d+', name) config = config_match.group(1) if config_match else None # Extract step (int after "_step") step_match = re.search(r'_step(\d+)', name) step = int(step_match.group(1)) if step_match else None result = { "supervisor": None, "coder": None, "step": step, "success": None, "iterations": None, "duration": None, "API_calls": None, "input_tokens": None, "output_tokens": None, "user_prompt_tokens": None, "supervisor_to_coder_tokens": None, "coder_output_tokens": None, "feedback_to_supervisor_tokens": None, "error": "Uncategorized", "error_description": None, "output_dir": output_dir, } log_dir = os.path.join(output_dir, "logs") if os.path.isdir(log_dir): comp_log_files = glob.glob(os.path.join(log_dir, "*comprehensive_log.txt")) comp_log_str = None if comp_log_files: with open(comp_log_files[0], "r") as f: comp_log_str = f.read() else: result["success"] = False result["error_description"] = "comprehensive log file not found" results.append(result) continue supervisor_match = re.search(r"Supervisor:\s*([^\s]+)", comp_log_str) coder_match = re.search(r"Coder:\s*([^\s]+)", comp_log_str) if supervisor_match: result["supervisor"] = supervisor_match.group(1) if coder_match: result["coder"] = coder_match.group(1) iterations_match = re.search(r"Total Iterations:\s*(\d+)", comp_log_str) if iterations_match: result["iterations"] = int(iterations_match.group(1)) duration_match = re.search(r"Duration:\s*([0-9:.\s]+)", comp_log_str) if duration_match: duration_str = duration_match.group(1).strip() try: t = datetime.datetime.strptime(duration_str, "%H:%M:%S.%f") except ValueError: t = datetime.datetime.strptime(duration_str, "%H:%M:%S") result["duration"] = t.hour * 3600 + t.minute * 60 + t.second + t.microsecond / 1e6 api_calls_match = re.search(r"Total API Calls:\s*(\d+)", comp_log_str) if api_calls_match: result["API_calls"] = int(api_calls_match.group(1)) input_tokens_match = re.search(r"Total Input Tokens:\s*(\d+)", comp_log_str) if input_tokens_match: result["input_tokens"] = int(input_tokens_match.group(1)) output_tokens_match = re.search(r"Total Output Tokens:\s*(\d+)", comp_log_str) if output_tokens_match: result["output_tokens"] = int(output_tokens_match.group(1)) match = re.search(r"User Prompt Tokens:\s*(\d+)", comp_log_str) if match: result["user_prompt_tokens"] = int(match.group(1)) match = re.search(r"Supervisor to Coder Tokens:\s*(\d+)", comp_log_str) if match: result["supervisor_to_coder_tokens"] = int(match.group(1)) match = re.search(r"Coder Output Tokens:\s*(\d+)", comp_log_str) if match: result["coder_output_tokens"] = int(match.group(1)) match = re.search(r"Feedback to Supervisor Tokens:\s*(\d+)", comp_log_str) if match: result["feedback_to_supervisor_tokens"] = int(match.group(1)) # Check validation.log to see if outputs are correct val_log_files = glob.glob(os.path.join(log_dir, "*validation.log")) val_log_str = None if val_log_files: with open(val_log_files[0], "r") as f: val_log_str = f.read() matches = re.findall(r'(✅ Validation successful|❌ Validation failed)', val_log_str) if not matches: result["success"] = False else: last = matches[-1] result["success"] = last == "✅ Validation successful" if (no_llm): if (result["success"]): result["error"] = None else: result["error"] = "Validation Error" val_log_str = val_log_str.replace('\n', '').replace('\r', '') else: result["success"] = False val_log_str = "" if (not no_llm): try: response = client.chat.completions.create( model = model, messages = [ { 'role': 'user', 'content': error_description_prompt + "\nComprehensive Log:\n" + comp_log_str + "\nValidation Log:\n" + val_log_str } ], temperature = 0.0 ) error_description = response.choices[-1].message.content error_description = " ".join(error_description.split()) error_description = error_description[:3000] result["error_description"] = error_description except Exception as e: print(f"OpenAI API error: {e}") else: if ("API call failed" in comp_log_str): result["error"] = "API Call Error" else: result["success"] = False result["error_description"] = "job submission failure" results.append(result) df = pd.DataFrame(results) df = df.sort_values(by=["supervisor", "coder", "step", "output_dir"]) df.to_csv(output_csv, index=False) print(f"Results written to {output_csv}") def categorize_errors(output_csv, model): client = openai.OpenAI( api_key = os.environ.get('CBORG_API_KEY'), base_url = 'https://api.cborg.lbl.gov' ) # Load the CSV as a pandas DataFrame df = pd.read_csv(output_csv, comment='#') # Get list of error_descriptions and their indices (for mapping back) error_descriptions = df['error_description'].fillna("").tolist() # 1. Generate categories prompt create_categories_prompt = ( "You are an expert at analyzing and organizing error messages from machine learning workflows in high energy physics.\n\n" "Workflow summary:\n" "- A user provides an analysis task prompt.\n" "- A supervisor agent breaks down the task and instructs a coder agent.\n" "- The coder agent generates code, which is executed.\n" "- The supervisor reviews results and may iterate with the coder to fix issues until the task is complete.\n" "Error descriptions below are collected from all steps and iterations of this workflow.\n\n" "Your task: Identify 5 to 10 distinct, meaningful categories that best capture the underlying nature or root cause of the errors in the list. " "Focus on grouping errors by what fundamentally caused them (such as logic mistakes, miscommunication, missing dependencies, data mismatches, etc.), " "rather than by their symptoms, error messages, or observable effects. " "Do NOT create categories based on how the error was observed or reported, but on the underlying issue that led to it.\n\n" "Each category should have a short, clear name and a one-sentence description that explains what kinds of errors belong in that category.\n\n" "Output only the categories in this format:\n" "1. [Category Name]: [One-sentence description]\n" "2. [Category Name]: [One-sentence description]\n" "...\n" "N. [Category Name]: [One-sentence description]\n\n" "Here are some example error categories:\n" "- Coding API Error: the coder incorrectly utilized common python packages (e.g. numpy, awkward, uproot, pandas)\n" "- User Prompt Misunderstanding: the supervisor did not properly interpret the user prompt" "Here are some error descriptions after running the workflow:\n" "```\n" ) # Add error descriptions to prompt, one per line create_categories_prompt += "\n".join(error_descriptions) + "\n```" # 2. Call LLM to get categories try: response = client.chat.completions.create( model=model, messages=[{'role': 'user', 'content': create_categories_prompt}], temperature=0.0 ) error_categories = response.choices[-1].message.content.strip() print("Categories found by LLM:\n", error_categories) except Exception as e: print(f"LLM API error (category generation): {e}") return df['error'] = df['error'].astype(str) for idx, error_description in tqdm(enumerate(error_descriptions), total=len(error_descriptions), desc="categorizing errors"): if not error_description.strip(): continue categorize_errors_prompt = ( "You are an expert at classifying error messages from machine learning workflows in high energy physics.\n\n" "Workflow summary:\n" "- A user provides an analysis task prompt.\n" "- A supervisor agent breaks down the task and instructs a coder agent.\n" "- The coder agent generates code, which is executed.\n" "- The supervisor reviews results and may iterate with the coder to fix issues until the task is complete.\n" "The error descriptions below are collected from all steps and iterations of this workflow.\n\n" "Below is a list of error categories, each with a short description:\n" f"{error_categories}\n\n" "Your task: For the given error description, select the single most appropriate error category from the list above. " "Base your choice on the underlying nature or root cause of the error, not on the symptoms, error messages, or observable effects. " "Focus on what fundamentally caused the error, such as logic mistakes, missing dependencies, data mismatches, or miscommunication, rather than how the error was reported or observed.\n" "Return ALL applicable category names, each wrapped with three asterisks on each side, separated by commas, like this: ***Category One***, ***Category Two***" "Do not include any other text, explanation, or formatting." "Error description:\n" "```\n" f"{error_description}\n" "```" ) def parse_categories(llm_output): # Find all ***Category Name*** matches return [cat.strip() for cat in re.findall(r"\*\*\*(.*?)\*\*\*", llm_output)] try: response = client.chat.completions.create( model=model, messages=[{'role': 'user', 'content': categorize_errors_prompt}], temperature=0.0 ) assignments_text = response.choices[-1].message.content.strip() categories = parse_categories(assignments_text) df.at[idx, 'error_categories'] = categories if categories else ["Uncategorized"] except Exception as e: print(f"LLM API error (assignment) at row {idx}: {e}") df.at[idx, 'error'] = "LLM API error" df.to_csv(output_csv, index=False) with open(output_csv, 'w', encoding='utf-8') as f: f.write("# LLM Generated Error Categories:\n") for line in error_categories.splitlines(): f.write(f"# {line}\n") f.write("\n") df.to_csv(f, index=False) print(f"Saved categorized errors to {output_csv}") def main(): parser = argparse.ArgumentParser(description="Summarize experiment logs and errors") parser.add_argument("--results_dir", type=str, default=" ", nargs='+', required=False, help="One or more directories containing experiment results") parser.add_argument("--output_csv", type=str, default="results_summary.csv", help="Path to output CSV file") parser.add_argument("--model", type=str, default="gpt-oss-120b", help="LLM model to use for error summarization") parser.add_argument("--no_llm", action="store_true", default=False, help="If set, only generate the CSV without LLM error description or categorization") args = parser.parse_args() summarize_results( results_dirs=args.results_dir, output_csv=args.output_csv, model=args.model, no_llm=args.no_llm ) if not args.no_llm: categorize_errors( output_csv=args.output_csv, model=args.model ) else: print("LLM error description and categorization skipped (--no_llm set)") if __name__ == "__main__": main()