Hisvee commited on
Commit
45e5b01
·
verified ·
1 Parent(s): 617aae5

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ model_not_working.not_safetensors filter=lfs diff=lfs merge=lfs -text
37
+ t4.png filter=lfs diff=lfs merge=lfs -text
38
+ collage.png filter=lfs diff=lfs merge=lfs -text
39
+ collage3.png filter=lfs diff=lfs merge=lfs -text
40
+ collage5.png filter=lfs diff=lfs merge=lfs -text
BiRefNet_config.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ class BiRefNetConfig(PretrainedConfig):
4
+ model_type = "SegformerForSemanticSegmentation"
5
+ def __init__(
6
+ self,
7
+ bb_pretrained=False,
8
+ **kwargs
9
+ ):
10
+ self.bb_pretrained = bb_pretrained
11
+ super().__init__(**kwargs)
README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: bria-rmbg-2.0
4
+ license_link: https://creativecommons.org/licenses/by-nc/4.0/deed.en
5
+ pipeline_tag: image-segmentation
6
+ tags:
7
+ - remove background
8
+ - background
9
+ - background-removal
10
+ - Pytorch
11
+ - vision
12
+ - legal liability
13
+ - transformers
14
+ - transformers.js
15
+ extra_gated_description: >-
16
+ Bria AI Model weights are open source for non commercial use only, per the
17
+ provided [license](https://creativecommons.org/licenses/by-nc/4.0/deed.en).
18
+ extra_gated_heading: Fill in this form to immediatly access the model for non commercial use
19
+ extra_gated_fields:
20
+ Name: text
21
+ Email: text
22
+ Company/Org name: text
23
+ Company Website URL: text
24
+ Discord user: text
25
+ I agree to BRIA’s Privacy policy, Terms & conditions, and acknowledge Non commercial use to be Personal use / Academy / Non profit (direct or indirect): checkbox
26
+ ---
27
+
28
+ # BRIA Background Removal v2.0 Model Card
29
+ <p align="center"><img src="https://platform.bria.ai/assets/Bria-logo-5e0c53b1.svg" alt="BRIA Logo" width="200" /></p>
30
+
31
+ <!-- RMBG Card wrapper -->
32
+ <div class="rmbg-card" style="position: relative; border-radius: 12px; overflow: hidden;">
33
+
34
+ <!-- FIBO Promo Banner (Top) -->
35
+ <a
36
+ href="https://huggingface.co/briaai/FIBO"
37
+ target="_blank"
38
+ rel="noopener"
39
+ aria-label="Explore FIBO on Hugging Face"
40
+ style="
41
+ position: absolute;
42
+ top: 0;
43
+ left: 0;
44
+ width: 100%;
45
+ display: flex;
46
+ align-items: center;
47
+ justify-content: center;
48
+ gap: 10px;
49
+ background: linear-gradient(90deg, #fff6b7 0%, #fde047 100%);
50
+ color: #1f2937;
51
+ text-decoration: none;
52
+ font-family: Inter, system-ui, -apple-system, Segoe UI, Roboto, Arial, sans-serif;
53
+ font-weight: 600;
54
+ font-size: 13px;
55
+ padding: 10px 0;
56
+ border-bottom: 1px solid rgba(0,0,0,0.08);
57
+ box-shadow: 0 2px 8px rgba(0,0,0,0.08);
58
+ z-index: 10;
59
+ ">
60
+ <img
61
+ src="https://huggingface.co/front/assets/huggingface_logo-noborder.svg"
62
+ alt="Hugging Face"
63
+ width="18"
64
+ height="18"
65
+ style="display:block"
66
+ />
67
+ <span>✨ Discover <strong>FIBO</strong> on Hugging Face</span>
68
+ </a>
69
+
70
+ <!-- ... your RMBG content below ... -->
71
+ <p align="center">
72
+ 💜 <a href="https://go.bria.ai/46gzn20"><b>Bria AI</b></a>&nbsp&nbsp | &nbsp&nbsp🤗 <a href="https://huggingface.co/briaai/">Hugging Face</a> &nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://blog.bria.ai/">Blog</a> &nbsp&nbsp
73
+ <br>
74
+ 🖥️ <a href="https://huggingface.co/spaces/briaai/BRIA-RMBG-2.0">Demo</a>&nbsp&nbsp| &nbsp&nbsp <a href="https://github.com/Bria-AI/RMBG-2.0">Github</a>&nbsp&nbsp
75
+ </p>
76
+
77
+ RMBG v2.0 is our new state-of-the-art background removal model significantly improves RMBG v1.4. The model is designed to effectively separate foreground from background in a range of
78
+ categories and image types. This model has been trained on a carefully selected dataset, which includes:
79
+ general stock images, e-commerce, gaming, and advertising content, making it suitable for commercial use cases powering enterprise content creation at scale.
80
+ The accuracy, efficiency, and versatility currently rival leading source-available models.
81
+ It is ideal where content safety, legally licensed datasets, and bias mitigation are paramount.
82
+
83
+ Developed by BRIA AI, RMBG v2.0 is available as a source-available model for non-commercial use.
84
+
85
+ ### Get Access
86
+
87
+ Bria RMBG2.0 is availabe everywhere you build, either as source-code and weights, ComfyUI nodes or API endpoints.
88
+
89
+ - **Purchase:** for commercial license simply click [Here](https://go.bria.ai/3D5EGp0).
90
+ - **API Endpoint**: [Bria.ai](https://platform.bria.ai/console/api/image-editing), [fal.ai](https://fal.ai/models/fal-ai/bria/background/remove), [Replicate](https://replicate.com/bria/remove-background)
91
+ - **ComfyUI**: [Use it in workflows](https://github.com/Bria-AI/ComfyUI-BRIA-API)
92
+ - **GitHub**: [github.com/Bria-AI/RMBG-2.0](https://github.com/Bria-AI/RMBG-2.0)
93
+
94
+ For more information, please visit our [website](https://bria.ai/).
95
+
96
+ Join our [Discord community](https://discord.gg/Nxe9YW9zHS) for more information, tutorials, tools, and to connect with other users!
97
+
98
+ [CLICK HERE FOR A DEMO](https://huggingface.co/spaces/briaai/BRIA-RMBG-2.0)
99
+
100
+
101
+
102
+ ![examples](t4.png)
103
+
104
+ ## Model Details
105
+ #####
106
+ ### Model Description
107
+
108
+ - **Developed by:** [BRIA AI](https://bria.ai/)
109
+ - **Model type:** Background Removal
110
+ - **License:** [Creative Commons Attribution–Non-Commercial (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/deed.en)
111
+ - The model is released under a CC BY-NC 4.0 license for non-commercial use.
112
+ - Commercial use is subject to a commercial agreement with BRIA. Available [here](https://share-eu1.hsforms.com/2sj9FVZTGSFmFRibDLhr_ZAf4e04?utm_campaign=RMBG%202.0&utm_source=Hugging%20face&utm_medium=hyperlink&utm_content=RMBG%20Hugging%20Face%20purchase%20form)
113
+
114
+ **Purchase:** to purchase a commercial license simply click [Here](https://go.bria.ai/3D5EGp0).
115
+
116
+ - **Model Description:** BRIA RMBG-2.0 is a dichotomous image segmentation model trained exclusively on a professional-grade dataset. The model output includes a single-channel 8-bit grayscale alpha matte, where each pixel value indicates the opacity level of the corresponding pixel in the original image. This non-binary output approach offers developers the flexibility to define custom thresholds for foreground-background separation, catering to varied use cases requirements and enhancing integration into complex pipelines.
117
+ - **BRIA:** Resources for more information: [BRIA AI](https://bria.ai/)
118
+
119
+
120
+
121
+ ## Training data
122
+ Bria-RMBG model was trained with over 15,000 high-quality, high-resolution, manually labeled (pixel-wise accuracy), fully licensed images.
123
+ Our benchmark included balanced gender, balanced ethnicity, and people with different types of disabilities.
124
+ For clarity, we provide our data distribution according to different categories, demonstrating our model’s versatility.
125
+
126
+ ### Distribution of images:
127
+
128
+ | Category | Distribution |
129
+ | -----------------------------------| -----------------------------------:|
130
+ | Objects only | 45.11% |
131
+ | People with objects/animals | 25.24% |
132
+ | People only | 17.35% |
133
+ | people/objects/animals with text | 8.52% |
134
+ | Text only | 2.52% |
135
+ | Animals only | 1.89% |
136
+
137
+ | Category | Distribution |
138
+ | -----------------------------------| -----------------------------------------:|
139
+ | Photorealistic | 87.70% |
140
+ | Non-Photorealistic | 12.30% |
141
+
142
+
143
+ | Category | Distribution |
144
+ | -----------------------------------| -----------------------------------:|
145
+ | Non Solid Background | 52.05% |
146
+ | Solid Background | 47.95%
147
+
148
+
149
+ | Category | Distribution |
150
+ | -----------------------------------| -----------------------------------:|
151
+ | Single main foreground object | 51.42% |
152
+ | Multiple objects in the foreground | 48.58% |
153
+
154
+
155
+ ## Qualitative Evaluation
156
+ Open source models comparison
157
+ ![diagram](diagram1.png)
158
+ ![examples](collage5.png)
159
+
160
+ ### Architecture
161
+ RMBG-2.0 is developed on the [BiRefNet](https://github.com/ZhengPeng7/BiRefNet) architecture enhanced with our proprietary dataset and training scheme. This training data significantly improves the model’s accuracy and effectiveness for background-removal task.<br>
162
+ If you use this model in your research, please cite:
163
+
164
+ ```
165
+ @article{BiRefNet,
166
+ title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
167
+ author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
168
+ journal={CAAI Artificial Intelligence Research},
169
+ year={2024}
170
+ }
171
+ ```
172
+
173
+ #### Requirements
174
+ ```bash
175
+ torch
176
+ torchvision
177
+ pillow
178
+ kornia
179
+ transformers
180
+ ```
181
+
182
+ ### Usage
183
+
184
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
185
+
186
+
187
+ ```python
188
+ from PIL import Image
189
+ import torch
190
+ from torchvision import transforms
191
+ from transformers import AutoModelForImageSegmentation
192
+
193
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
194
+ model = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True).eval().to(device)
195
+
196
+ # Data settings
197
+ image_size = (1024, 1024)
198
+ transform_image = transforms.Compose([
199
+ transforms.Resize(image_size),
200
+ transforms.ToTensor(),
201
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
202
+ ])
203
+
204
+ image = Image.open(input_image_path)
205
+ input_images = transform_image(image).unsqueeze(0).to(device)
206
+
207
+ # Prediction
208
+ with torch.no_grad():
209
+ preds = model(input_images)[-1].sigmoid().cpu()
210
+ pred = preds[0].squeeze()
211
+ pred_pil = transforms.ToPILImage()(pred)
212
+ mask = pred_pil.resize(image.size)
213
+ image.putalpha(mask)
214
+
215
+ image.save("no_bg_image.png")
216
+ ```
217
+
218
+
219
+ </div>
birefnet.py ADDED
@@ -0,0 +1,2245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### config.py
2
+
3
+ import os
4
+ import math
5
+ from transformers import PretrainedConfig
6
+
7
+ class Config(PretrainedConfig):
8
+ def __init__(self) -> None:
9
+ super().__init__()
10
+ # PATH settings
11
+ self.sys_home_dir = os.path.expanduser('~') # Make up your file system as: SYS_HOME_DIR/codes/dis/BiRefNet, SYS_HOME_DIR/datasets/dis/xx, SYS_HOME_DIR/weights/xx
12
+
13
+ # TASK settings
14
+ self.task = ['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'][0]
15
+ self.training_set = {
16
+ 'DIS5K': ['DIS-TR', 'DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'][0],
17
+ 'COD': 'TR-COD10K+TR-CAMO',
18
+ 'HRSOD': ['TR-DUTS', 'TR-HRSOD', 'TR-UHRSD', 'TR-DUTS+TR-HRSOD', 'TR-DUTS+TR-UHRSD', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][5],
19
+ 'DIS5K+HRSOD+HRS10K': 'DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4+DIS-TR+TE-HRS10K+TE-HRSOD+TE-UHRSD+TR-HRS10K+TR-HRSOD+TR-UHRSD', # leave DIS-VD for evaluation.
20
+ 'P3M-10k': 'TR-P3M-10k',
21
+ }[self.task]
22
+ self.prompt4loc = ['dense', 'sparse'][0]
23
+
24
+ # Faster-Training settings
25
+ self.load_all = True
26
+ self.compile = True # 1. Trigger CPU memory leak in some extend, which is an inherent problem of PyTorch.
27
+ # Machines with > 70GB CPU memory can run the whole training on DIS5K with default setting.
28
+ # 2. Higher PyTorch version may fix it: https://github.com/pytorch/pytorch/issues/119607.
29
+ # 3. But compile in Pytorch > 2.0.1 seems to bring no acceleration for training.
30
+ self.precisionHigh = True
31
+
32
+ # MODEL settings
33
+ self.ms_supervision = True
34
+ self.out_ref = self.ms_supervision and True
35
+ self.dec_ipt = True
36
+ self.dec_ipt_split = True
37
+ self.cxt_num = [0, 3][1] # multi-scale skip connections from encoder
38
+ self.mul_scl_ipt = ['', 'add', 'cat'][2]
39
+ self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2]
40
+ self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1]
41
+ self.dec_blk = ['BasicDecBlk', 'ResBlk', 'HierarAttDecBlk'][0]
42
+
43
+ # TRAINING settings
44
+ self.batch_size = 4
45
+ self.IoU_finetune_last_epochs = [
46
+ 0,
47
+ {
48
+ 'DIS5K': -50,
49
+ 'COD': -20,
50
+ 'HRSOD': -20,
51
+ 'DIS5K+HRSOD+HRS10K': -20,
52
+ 'P3M-10k': -20,
53
+ }[self.task]
54
+ ][1] # choose 0 to skip
55
+ self.lr = (1e-4 if 'DIS5K' in self.task else 1e-5) * math.sqrt(self.batch_size / 4) # DIS needs high lr to converge faster. Adapt the lr linearly
56
+ self.size = 1024
57
+ self.num_workers = max(4, self.batch_size) # will be decrease to min(it, batch_size) at the initialization of the data_loader
58
+
59
+ # Backbone settings
60
+ self.bb = [
61
+ 'vgg16', 'vgg16bn', 'resnet50', # 0, 1, 2
62
+ 'swin_v1_t', 'swin_v1_s', # 3, 4
63
+ 'swin_v1_b', 'swin_v1_l', # 5-bs9, 6-bs4
64
+ 'pvt_v2_b0', 'pvt_v2_b1', # 7, 8
65
+ 'pvt_v2_b2', 'pvt_v2_b5', # 9-bs10, 10-bs5
66
+ ][6]
67
+ self.lateral_channels_in_collection = {
68
+ 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
69
+ 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
70
+ 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
71
+ 'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96],
72
+ 'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64],
73
+ }[self.bb]
74
+ if self.mul_scl_ipt == 'cat':
75
+ self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection]
76
+ self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else []
77
+
78
+ # MODEL settings - inactive
79
+ self.lat_blk = ['BasicLatBlk'][0]
80
+ self.dec_channels_inter = ['fixed', 'adap'][0]
81
+ self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0]
82
+ self.progressive_ref = self.refine and True
83
+ self.ender = self.progressive_ref and False
84
+ self.scale = self.progressive_ref and 2
85
+ self.auxiliary_classification = False # Only for DIS5K, where class labels are saved in `dataset.py`.
86
+ self.refine_iteration = 1
87
+ self.freeze_bb = False
88
+ self.model = [
89
+ 'BiRefNet',
90
+ ][0]
91
+ if self.dec_blk == 'HierarAttDecBlk':
92
+ self.batch_size = 2 ** [0, 1, 2, 3, 4][2]
93
+
94
+ # TRAINING settings - inactive
95
+ self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4]
96
+ self.optimizer = ['Adam', 'AdamW'][1]
97
+ self.lr_decay_epochs = [1e5] # Set to negative N to decay the lr in the last N-th epoch.
98
+ self.lr_decay_rate = 0.5
99
+ # Loss
100
+ self.lambdas_pix_last = {
101
+ # not 0 means opening this loss
102
+ # original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
103
+ 'bce': 30 * 1, # high performance
104
+ 'iou': 0.5 * 1, # 0 / 255
105
+ 'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64)
106
+ 'mse': 150 * 0, # can smooth the saliency map
107
+ 'triplet': 3 * 0,
108
+ 'reg': 100 * 0,
109
+ 'ssim': 10 * 1, # help contours,
110
+ 'cnt': 5 * 0, # help contours
111
+ 'structure': 5 * 0, # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4.
112
+ }
113
+ self.lambdas_cls = {
114
+ 'ce': 5.0
115
+ }
116
+ # Adv
117
+ self.lambda_adv_g = 10. * 0 # turn to 0 to avoid adv training
118
+ self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)
119
+
120
+ # PATH settings - inactive
121
+ self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis')
122
+ self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights')
123
+ self.weights = {
124
+ 'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'),
125
+ 'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
126
+ 'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
127
+ 'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
128
+ 'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]),
129
+ 'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]),
130
+ 'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]),
131
+ 'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]),
132
+ }
133
+
134
+ # Callbacks - inactive
135
+ self.verbose_eval = True
136
+ self.only_S_MAE = False
137
+ self.use_fp16 = False # Bugs. It may cause nan in training.
138
+ self.SDPA_enabled = False # Bugs. Slower and errors occur in multi-GPUs
139
+
140
+ # others
141
+ self.device = [0, 'cpu'][0] # .to(0) == .to('cuda:0')
142
+
143
+ self.batch_size_valid = 1
144
+ self.rand_seed = 7
145
+ # run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f]
146
+ # with open(run_sh_file[0], 'r') as f:
147
+ # lines = f.readlines()
148
+ # self.save_last = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'val_last=' in l][0].split('val_last=')[-1].split()[0])
149
+ # self.save_step = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'step=' in l][0].split('step=')[-1].split()[0])
150
+ # self.val_step = [0, self.save_step][0]
151
+
152
+ def print_task(self) -> None:
153
+ # Return task for choosing settings in shell scripts.
154
+ print(self.task)
155
+
156
+
157
+
158
+ ### models/backbones/pvt_v2.py
159
+
160
+ import torch
161
+ import torch.nn as nn
162
+ from functools import partial
163
+
164
+ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
165
+ from timm.models.registry import register_model
166
+
167
+ import math
168
+
169
+ # from config import Config
170
+
171
+ # config = Config()
172
+
173
+ class Mlp(nn.Module):
174
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
175
+ super().__init__()
176
+ out_features = out_features or in_features
177
+ hidden_features = hidden_features or in_features
178
+ self.fc1 = nn.Linear(in_features, hidden_features)
179
+ self.dwconv = DWConv(hidden_features)
180
+ self.act = act_layer()
181
+ self.fc2 = nn.Linear(hidden_features, out_features)
182
+ self.drop = nn.Dropout(drop)
183
+
184
+ self.apply(self._init_weights)
185
+
186
+ def _init_weights(self, m):
187
+ if isinstance(m, nn.Linear):
188
+ trunc_normal_(m.weight, std=.02)
189
+ if isinstance(m, nn.Linear) and m.bias is not None:
190
+ nn.init.constant_(m.bias, 0)
191
+ elif isinstance(m, nn.LayerNorm):
192
+ nn.init.constant_(m.bias, 0)
193
+ nn.init.constant_(m.weight, 1.0)
194
+ elif isinstance(m, nn.Conv2d):
195
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
196
+ fan_out //= m.groups
197
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
198
+ if m.bias is not None:
199
+ m.bias.data.zero_()
200
+
201
+ def forward(self, x, H, W):
202
+ x = self.fc1(x)
203
+ x = self.dwconv(x, H, W)
204
+ x = self.act(x)
205
+ x = self.drop(x)
206
+ x = self.fc2(x)
207
+ x = self.drop(x)
208
+ return x
209
+
210
+
211
+ class Attention(nn.Module):
212
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
213
+ super().__init__()
214
+ assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
215
+
216
+ self.dim = dim
217
+ self.num_heads = num_heads
218
+ head_dim = dim // num_heads
219
+ self.scale = qk_scale or head_dim ** -0.5
220
+
221
+ self.q = nn.Linear(dim, dim, bias=qkv_bias)
222
+ self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
223
+ self.attn_drop_prob = attn_drop
224
+ self.attn_drop = nn.Dropout(attn_drop)
225
+ self.proj = nn.Linear(dim, dim)
226
+ self.proj_drop = nn.Dropout(proj_drop)
227
+
228
+ self.sr_ratio = sr_ratio
229
+ if sr_ratio > 1:
230
+ self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
231
+ self.norm = nn.LayerNorm(dim)
232
+
233
+ self.apply(self._init_weights)
234
+
235
+ def _init_weights(self, m):
236
+ if isinstance(m, nn.Linear):
237
+ trunc_normal_(m.weight, std=.02)
238
+ if isinstance(m, nn.Linear) and m.bias is not None:
239
+ nn.init.constant_(m.bias, 0)
240
+ elif isinstance(m, nn.LayerNorm):
241
+ nn.init.constant_(m.bias, 0)
242
+ nn.init.constant_(m.weight, 1.0)
243
+ elif isinstance(m, nn.Conv2d):
244
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
245
+ fan_out //= m.groups
246
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
247
+ if m.bias is not None:
248
+ m.bias.data.zero_()
249
+
250
+ def forward(self, x, H, W):
251
+ B, N, C = x.shape
252
+ q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
253
+
254
+ if self.sr_ratio > 1:
255
+ x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
256
+ x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
257
+ x_ = self.norm(x_)
258
+ kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
259
+ else:
260
+ kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
261
+ k, v = kv[0], kv[1]
262
+
263
+ if config.SDPA_enabled:
264
+ x = torch.nn.functional.scaled_dot_product_attention(
265
+ q, k, v,
266
+ attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
267
+ ).transpose(1, 2).reshape(B, N, C)
268
+ else:
269
+ attn = (q @ k.transpose(-2, -1)) * self.scale
270
+ attn = attn.softmax(dim=-1)
271
+ attn = self.attn_drop(attn)
272
+
273
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
274
+ x = self.proj(x)
275
+ x = self.proj_drop(x)
276
+
277
+ return x
278
+
279
+
280
+ class Block(nn.Module):
281
+
282
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
283
+ drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
284
+ super().__init__()
285
+ self.norm1 = norm_layer(dim)
286
+ self.attn = Attention(
287
+ dim,
288
+ num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
289
+ attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
290
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
291
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
292
+ self.norm2 = norm_layer(dim)
293
+ mlp_hidden_dim = int(dim * mlp_ratio)
294
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
295
+
296
+ self.apply(self._init_weights)
297
+
298
+ def _init_weights(self, m):
299
+ if isinstance(m, nn.Linear):
300
+ trunc_normal_(m.weight, std=.02)
301
+ if isinstance(m, nn.Linear) and m.bias is not None:
302
+ nn.init.constant_(m.bias, 0)
303
+ elif isinstance(m, nn.LayerNorm):
304
+ nn.init.constant_(m.bias, 0)
305
+ nn.init.constant_(m.weight, 1.0)
306
+ elif isinstance(m, nn.Conv2d):
307
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
308
+ fan_out //= m.groups
309
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
310
+ if m.bias is not None:
311
+ m.bias.data.zero_()
312
+
313
+ def forward(self, x, H, W):
314
+ x = x + self.drop_path(self.attn(self.norm1(x), H, W))
315
+ x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
316
+
317
+ return x
318
+
319
+
320
+ class OverlapPatchEmbed(nn.Module):
321
+ """ Image to Patch Embedding
322
+ """
323
+
324
+ def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
325
+ super().__init__()
326
+ img_size = to_2tuple(img_size)
327
+ patch_size = to_2tuple(patch_size)
328
+
329
+ self.img_size = img_size
330
+ self.patch_size = patch_size
331
+ self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
332
+ self.num_patches = self.H * self.W
333
+ self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
334
+ padding=(patch_size[0] // 2, patch_size[1] // 2))
335
+ self.norm = nn.LayerNorm(embed_dim)
336
+
337
+ self.apply(self._init_weights)
338
+
339
+ def _init_weights(self, m):
340
+ if isinstance(m, nn.Linear):
341
+ trunc_normal_(m.weight, std=.02)
342
+ if isinstance(m, nn.Linear) and m.bias is not None:
343
+ nn.init.constant_(m.bias, 0)
344
+ elif isinstance(m, nn.LayerNorm):
345
+ nn.init.constant_(m.bias, 0)
346
+ nn.init.constant_(m.weight, 1.0)
347
+ elif isinstance(m, nn.Conv2d):
348
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
349
+ fan_out //= m.groups
350
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
351
+ if m.bias is not None:
352
+ m.bias.data.zero_()
353
+
354
+ def forward(self, x):
355
+ x = self.proj(x)
356
+ _, _, H, W = x.shape
357
+ x = x.flatten(2).transpose(1, 2)
358
+ x = self.norm(x)
359
+
360
+ return x, H, W
361
+
362
+
363
+ class PyramidVisionTransformerImpr(nn.Module):
364
+ def __init__(self, img_size=224, patch_size=16, in_channels=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
365
+ num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
366
+ attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
367
+ depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
368
+ super().__init__()
369
+ self.num_classes = num_classes
370
+ self.depths = depths
371
+
372
+ # patch_embed
373
+ self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_channels=in_channels,
374
+ embed_dim=embed_dims[0])
375
+ self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_channels=embed_dims[0],
376
+ embed_dim=embed_dims[1])
377
+ self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_channels=embed_dims[1],
378
+ embed_dim=embed_dims[2])
379
+ self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_channels=embed_dims[2],
380
+ embed_dim=embed_dims[3])
381
+
382
+ # transformer encoder
383
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
384
+ cur = 0
385
+ self.block1 = nn.ModuleList([Block(
386
+ dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
387
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
388
+ sr_ratio=sr_ratios[0])
389
+ for i in range(depths[0])])
390
+ self.norm1 = norm_layer(embed_dims[0])
391
+
392
+ cur += depths[0]
393
+ self.block2 = nn.ModuleList([Block(
394
+ dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
395
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
396
+ sr_ratio=sr_ratios[1])
397
+ for i in range(depths[1])])
398
+ self.norm2 = norm_layer(embed_dims[1])
399
+
400
+ cur += depths[1]
401
+ self.block3 = nn.ModuleList([Block(
402
+ dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
403
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
404
+ sr_ratio=sr_ratios[2])
405
+ for i in range(depths[2])])
406
+ self.norm3 = norm_layer(embed_dims[2])
407
+
408
+ cur += depths[2]
409
+ self.block4 = nn.ModuleList([Block(
410
+ dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
411
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
412
+ sr_ratio=sr_ratios[3])
413
+ for i in range(depths[3])])
414
+ self.norm4 = norm_layer(embed_dims[3])
415
+
416
+ # classification head
417
+ # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
418
+
419
+ self.apply(self._init_weights)
420
+
421
+ def _init_weights(self, m):
422
+ if isinstance(m, nn.Linear):
423
+ trunc_normal_(m.weight, std=.02)
424
+ if isinstance(m, nn.Linear) and m.bias is not None:
425
+ nn.init.constant_(m.bias, 0)
426
+ elif isinstance(m, nn.LayerNorm):
427
+ nn.init.constant_(m.bias, 0)
428
+ nn.init.constant_(m.weight, 1.0)
429
+ elif isinstance(m, nn.Conv2d):
430
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
431
+ fan_out //= m.groups
432
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
433
+ if m.bias is not None:
434
+ m.bias.data.zero_()
435
+
436
+ def init_weights(self, pretrained=None):
437
+ if isinstance(pretrained, str):
438
+ logger = 1
439
+ #load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
440
+
441
+ def reset_drop_path(self, drop_path_rate):
442
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
443
+ cur = 0
444
+ for i in range(self.depths[0]):
445
+ self.block1[i].drop_path.drop_prob = dpr[cur + i]
446
+
447
+ cur += self.depths[0]
448
+ for i in range(self.depths[1]):
449
+ self.block2[i].drop_path.drop_prob = dpr[cur + i]
450
+
451
+ cur += self.depths[1]
452
+ for i in range(self.depths[2]):
453
+ self.block3[i].drop_path.drop_prob = dpr[cur + i]
454
+
455
+ cur += self.depths[2]
456
+ for i in range(self.depths[3]):
457
+ self.block4[i].drop_path.drop_prob = dpr[cur + i]
458
+
459
+ def freeze_patch_emb(self):
460
+ self.patch_embed1.requires_grad = False
461
+
462
+ @torch.jit.ignore
463
+ def no_weight_decay(self):
464
+ return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better
465
+
466
+ def get_classifier(self):
467
+ return self.head
468
+
469
+ def reset_classifier(self, num_classes, global_pool=''):
470
+ self.num_classes = num_classes
471
+ self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
472
+
473
+ def forward_features(self, x):
474
+ B = x.shape[0]
475
+ outs = []
476
+
477
+ # stage 1
478
+ x, H, W = self.patch_embed1(x)
479
+ for i, blk in enumerate(self.block1):
480
+ x = blk(x, H, W)
481
+ x = self.norm1(x)
482
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
483
+ outs.append(x)
484
+
485
+ # stage 2
486
+ x, H, W = self.patch_embed2(x)
487
+ for i, blk in enumerate(self.block2):
488
+ x = blk(x, H, W)
489
+ x = self.norm2(x)
490
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
491
+ outs.append(x)
492
+
493
+ # stage 3
494
+ x, H, W = self.patch_embed3(x)
495
+ for i, blk in enumerate(self.block3):
496
+ x = blk(x, H, W)
497
+ x = self.norm3(x)
498
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
499
+ outs.append(x)
500
+
501
+ # stage 4
502
+ x, H, W = self.patch_embed4(x)
503
+ for i, blk in enumerate(self.block4):
504
+ x = blk(x, H, W)
505
+ x = self.norm4(x)
506
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
507
+ outs.append(x)
508
+
509
+ return outs
510
+
511
+ # return x.mean(dim=1)
512
+
513
+ def forward(self, x):
514
+ x = self.forward_features(x)
515
+ # x = self.head(x)
516
+
517
+ return x
518
+
519
+
520
+ class DWConv(nn.Module):
521
+ def __init__(self, dim=768):
522
+ super(DWConv, self).__init__()
523
+ self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
524
+
525
+ def forward(self, x, H, W):
526
+ B, N, C = x.shape
527
+ x = x.transpose(1, 2).view(B, C, H, W).contiguous()
528
+ x = self.dwconv(x)
529
+ x = x.flatten(2).transpose(1, 2)
530
+
531
+ return x
532
+
533
+
534
+ def _conv_filter(state_dict, patch_size=16):
535
+ """ convert patch embedding weight from manual patchify + linear proj to conv"""
536
+ out_dict = {}
537
+ for k, v in state_dict.items():
538
+ if 'patch_embed.proj.weight' in k:
539
+ v = v.reshape((v.shape[0], 3, patch_size, patch_size))
540
+ out_dict[k] = v
541
+
542
+ return out_dict
543
+
544
+
545
+ ## @register_model
546
+ class pvt_v2_b0(PyramidVisionTransformerImpr):
547
+ def __init__(self, **kwargs):
548
+ super(pvt_v2_b0, self).__init__(
549
+ patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
550
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
551
+ drop_rate=0.0, drop_path_rate=0.1)
552
+
553
+
554
+
555
+ ## @register_model
556
+ class pvt_v2_b1(PyramidVisionTransformerImpr):
557
+ def __init__(self, **kwargs):
558
+ super(pvt_v2_b1, self).__init__(
559
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
560
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
561
+ drop_rate=0.0, drop_path_rate=0.1)
562
+
563
+ ## @register_model
564
+ class pvt_v2_b2(PyramidVisionTransformerImpr):
565
+ def __init__(self, in_channels=3, **kwargs):
566
+ super(pvt_v2_b2, self).__init__(
567
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
568
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
569
+ drop_rate=0.0, drop_path_rate=0.1, in_channels=in_channels)
570
+
571
+ ## @register_model
572
+ class pvt_v2_b3(PyramidVisionTransformerImpr):
573
+ def __init__(self, **kwargs):
574
+ super(pvt_v2_b3, self).__init__(
575
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
576
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
577
+ drop_rate=0.0, drop_path_rate=0.1)
578
+
579
+ ## @register_model
580
+ class pvt_v2_b4(PyramidVisionTransformerImpr):
581
+ def __init__(self, **kwargs):
582
+ super(pvt_v2_b4, self).__init__(
583
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
584
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
585
+ drop_rate=0.0, drop_path_rate=0.1)
586
+
587
+
588
+ ## @register_model
589
+ class pvt_v2_b5(PyramidVisionTransformerImpr):
590
+ def __init__(self, **kwargs):
591
+ super(pvt_v2_b5, self).__init__(
592
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
593
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
594
+ drop_rate=0.0, drop_path_rate=0.1)
595
+
596
+
597
+
598
+ ### models/backbones/swin_v1.py
599
+
600
+ # --------------------------------------------------------
601
+ # Swin Transformer
602
+ # Copyright (c) 2021 Microsoft
603
+ # Licensed under The MIT License [see LICENSE for details]
604
+ # Written by Ze Liu, Yutong Lin, Yixuan Wei
605
+ # --------------------------------------------------------
606
+
607
+ import torch
608
+ import torch.nn as nn
609
+ import torch.nn.functional as F
610
+ import torch.utils.checkpoint as checkpoint
611
+ import numpy as np
612
+ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
613
+
614
+ # from config import Config
615
+
616
+
617
+ # config = Config()
618
+
619
+ class Mlp(nn.Module):
620
+ """ Multilayer perceptron."""
621
+
622
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
623
+ super().__init__()
624
+ out_features = out_features or in_features
625
+ hidden_features = hidden_features or in_features
626
+ self.fc1 = nn.Linear(in_features, hidden_features)
627
+ self.act = act_layer()
628
+ self.fc2 = nn.Linear(hidden_features, out_features)
629
+ self.drop = nn.Dropout(drop)
630
+
631
+ def forward(self, x):
632
+ x = self.fc1(x)
633
+ x = self.act(x)
634
+ x = self.drop(x)
635
+ x = self.fc2(x)
636
+ x = self.drop(x)
637
+ return x
638
+
639
+
640
+ def window_partition(x, window_size):
641
+ """
642
+ Args:
643
+ x: (B, H, W, C)
644
+ window_size (int): window size
645
+
646
+ Returns:
647
+ windows: (num_windows*B, window_size, window_size, C)
648
+ """
649
+ B, H, W, C = x.shape
650
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
651
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
652
+ return windows
653
+
654
+
655
+ def window_reverse(windows, window_size, H, W):
656
+ """
657
+ Args:
658
+ windows: (num_windows*B, window_size, window_size, C)
659
+ window_size (int): Window size
660
+ H (int): Height of image
661
+ W (int): Width of image
662
+
663
+ Returns:
664
+ x: (B, H, W, C)
665
+ """
666
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
667
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
668
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
669
+ return x
670
+
671
+
672
+ class WindowAttention(nn.Module):
673
+ """ Window based multi-head self attention (W-MSA) module with relative position bias.
674
+ It supports both of shifted and non-shifted window.
675
+
676
+ Args:
677
+ dim (int): Number of input channels.
678
+ window_size (tuple[int]): The height and width of the window.
679
+ num_heads (int): Number of attention heads.
680
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
681
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
682
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
683
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
684
+ """
685
+
686
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
687
+
688
+ super().__init__()
689
+ self.dim = dim
690
+ self.window_size = window_size # Wh, Ww
691
+ self.num_heads = num_heads
692
+ head_dim = dim // num_heads
693
+ self.scale = qk_scale or head_dim ** -0.5
694
+
695
+ # define a parameter table of relative position bias
696
+ self.relative_position_bias_table = nn.Parameter(
697
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
698
+
699
+ # get pair-wise relative position index for each token inside the window
700
+ coords_h = torch.arange(self.window_size[0])
701
+ coords_w = torch.arange(self.window_size[1])
702
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij')) # 2, Wh, Ww
703
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
704
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
705
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
706
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
707
+ relative_coords[:, :, 1] += self.window_size[1] - 1
708
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
709
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
710
+ self.register_buffer("relative_position_index", relative_position_index)
711
+
712
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
713
+ self.attn_drop_prob = attn_drop
714
+ self.attn_drop = nn.Dropout(attn_drop)
715
+ self.proj = nn.Linear(dim, dim)
716
+ self.proj_drop = nn.Dropout(proj_drop)
717
+
718
+ trunc_normal_(self.relative_position_bias_table, std=.02)
719
+ self.softmax = nn.Softmax(dim=-1)
720
+
721
+ def forward(self, x, mask=None):
722
+ """ Forward function.
723
+
724
+ Args:
725
+ x: input features with shape of (num_windows*B, N, C)
726
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
727
+ """
728
+ B_, N, C = x.shape
729
+ qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
730
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
731
+
732
+ q = q * self.scale
733
+
734
+ if config.SDPA_enabled:
735
+ x = torch.nn.functional.scaled_dot_product_attention(
736
+ q, k, v,
737
+ attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
738
+ ).transpose(1, 2).reshape(B_, N, C)
739
+ else:
740
+ attn = (q @ k.transpose(-2, -1))
741
+
742
+ relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
743
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
744
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
745
+ attn = attn + relative_position_bias.unsqueeze(0)
746
+
747
+ if mask is not None:
748
+ nW = mask.shape[0]
749
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
750
+ attn = attn.view(-1, self.num_heads, N, N)
751
+ attn = self.softmax(attn)
752
+ else:
753
+ attn = self.softmax(attn)
754
+
755
+ attn = self.attn_drop(attn)
756
+
757
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
758
+ x = self.proj(x)
759
+ x = self.proj_drop(x)
760
+ return x
761
+
762
+
763
+ class SwinTransformerBlock(nn.Module):
764
+ """ Swin Transformer Block.
765
+
766
+ Args:
767
+ dim (int): Number of input channels.
768
+ num_heads (int): Number of attention heads.
769
+ window_size (int): Window size.
770
+ shift_size (int): Shift size for SW-MSA.
771
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
772
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
773
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
774
+ drop (float, optional): Dropout rate. Default: 0.0
775
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
776
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
777
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
778
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
779
+ """
780
+
781
+ def __init__(self, dim, num_heads, window_size=7, shift_size=0,
782
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
783
+ act_layer=nn.GELU, norm_layer=nn.LayerNorm):
784
+ super().__init__()
785
+ self.dim = dim
786
+ self.num_heads = num_heads
787
+ self.window_size = window_size
788
+ self.shift_size = shift_size
789
+ self.mlp_ratio = mlp_ratio
790
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
791
+
792
+ self.norm1 = norm_layer(dim)
793
+ self.attn = WindowAttention(
794
+ dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
795
+ qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
796
+
797
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
798
+ self.norm2 = norm_layer(dim)
799
+ mlp_hidden_dim = int(dim * mlp_ratio)
800
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
801
+
802
+ self.H = None
803
+ self.W = None
804
+
805
+ def forward(self, x, mask_matrix):
806
+ """ Forward function.
807
+
808
+ Args:
809
+ x: Input feature, tensor size (B, H*W, C).
810
+ H, W: Spatial resolution of the input feature.
811
+ mask_matrix: Attention mask for cyclic shift.
812
+ """
813
+ B, L, C = x.shape
814
+ H, W = self.H, self.W
815
+ assert L == H * W, "input feature has wrong size"
816
+
817
+ shortcut = x
818
+ x = self.norm1(x)
819
+ x = x.view(B, H, W, C)
820
+
821
+ # pad feature maps to multiples of window size
822
+ pad_l = pad_t = 0
823
+ pad_r = (self.window_size - W % self.window_size) % self.window_size
824
+ pad_b = (self.window_size - H % self.window_size) % self.window_size
825
+ x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
826
+ _, Hp, Wp, _ = x.shape
827
+
828
+ # cyclic shift
829
+ if self.shift_size > 0:
830
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
831
+ attn_mask = mask_matrix
832
+ else:
833
+ shifted_x = x
834
+ attn_mask = None
835
+
836
+ # partition windows
837
+ x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
838
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
839
+
840
+ # W-MSA/SW-MSA
841
+ attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
842
+
843
+ # merge windows
844
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
845
+ shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
846
+
847
+ # reverse cyclic shift
848
+ if self.shift_size > 0:
849
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
850
+ else:
851
+ x = shifted_x
852
+
853
+ if pad_r > 0 or pad_b > 0:
854
+ x = x[:, :H, :W, :].contiguous()
855
+
856
+ x = x.view(B, H * W, C)
857
+
858
+ # FFN
859
+ x = shortcut + self.drop_path(x)
860
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
861
+
862
+ return x
863
+
864
+
865
+ class PatchMerging(nn.Module):
866
+ """ Patch Merging Layer
867
+
868
+ Args:
869
+ dim (int): Number of input channels.
870
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
871
+ """
872
+ def __init__(self, dim, norm_layer=nn.LayerNorm):
873
+ super().__init__()
874
+ self.dim = dim
875
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
876
+ self.norm = norm_layer(4 * dim)
877
+
878
+ def forward(self, x, H, W):
879
+ """ Forward function.
880
+
881
+ Args:
882
+ x: Input feature, tensor size (B, H*W, C).
883
+ H, W: Spatial resolution of the input feature.
884
+ """
885
+ B, L, C = x.shape
886
+ assert L == H * W, "input feature has wrong size"
887
+
888
+ x = x.view(B, H, W, C)
889
+
890
+ # padding
891
+ pad_input = (H % 2 == 1) or (W % 2 == 1)
892
+ if pad_input:
893
+ x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
894
+
895
+ x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
896
+ x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
897
+ x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
898
+ x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
899
+ x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
900
+ x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
901
+
902
+ x = self.norm(x)
903
+ x = self.reduction(x)
904
+
905
+ return x
906
+
907
+
908
+ class BasicLayer(nn.Module):
909
+ """ A basic Swin Transformer layer for one stage.
910
+
911
+ Args:
912
+ dim (int): Number of feature channels
913
+ depth (int): Depths of this stage.
914
+ num_heads (int): Number of attention head.
915
+ window_size (int): Local window size. Default: 7.
916
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
917
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
918
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
919
+ drop (float, optional): Dropout rate. Default: 0.0
920
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
921
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
922
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
923
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
924
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
925
+ """
926
+
927
+ def __init__(self,
928
+ dim,
929
+ depth,
930
+ num_heads,
931
+ window_size=7,
932
+ mlp_ratio=4.,
933
+ qkv_bias=True,
934
+ qk_scale=None,
935
+ drop=0.,
936
+ attn_drop=0.,
937
+ drop_path=0.,
938
+ norm_layer=nn.LayerNorm,
939
+ downsample=None,
940
+ use_checkpoint=False):
941
+ super().__init__()
942
+ self.window_size = window_size
943
+ self.shift_size = window_size // 2
944
+ self.depth = depth
945
+ self.use_checkpoint = use_checkpoint
946
+
947
+ # build blocks
948
+ self.blocks = nn.ModuleList([
949
+ SwinTransformerBlock(
950
+ dim=dim,
951
+ num_heads=num_heads,
952
+ window_size=window_size,
953
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
954
+ mlp_ratio=mlp_ratio,
955
+ qkv_bias=qkv_bias,
956
+ qk_scale=qk_scale,
957
+ drop=drop,
958
+ attn_drop=attn_drop,
959
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
960
+ norm_layer=norm_layer)
961
+ for i in range(depth)])
962
+
963
+ # patch merging layer
964
+ if downsample is not None:
965
+ self.downsample = downsample(dim=dim, norm_layer=norm_layer)
966
+ else:
967
+ self.downsample = None
968
+
969
+ def forward(self, x, H, W):
970
+ """ Forward function.
971
+
972
+ Args:
973
+ x: Input feature, tensor size (B, H*W, C).
974
+ H, W: Spatial resolution of the input feature.
975
+ """
976
+
977
+ # calculate attention mask for SW-MSA
978
+ Hp = int(np.ceil(H / self.window_size)) * self.window_size
979
+ Wp = int(np.ceil(W / self.window_size)) * self.window_size
980
+ img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
981
+ h_slices = (slice(0, -self.window_size),
982
+ slice(-self.window_size, -self.shift_size),
983
+ slice(-self.shift_size, None))
984
+ w_slices = (slice(0, -self.window_size),
985
+ slice(-self.window_size, -self.shift_size),
986
+ slice(-self.shift_size, None))
987
+ cnt = 0
988
+ for h in h_slices:
989
+ for w in w_slices:
990
+ img_mask[:, h, w, :] = cnt
991
+ cnt += 1
992
+
993
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
994
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
995
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
996
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)).to(x.dtype)
997
+
998
+ for blk in self.blocks:
999
+ blk.H, blk.W = H, W
1000
+ if self.use_checkpoint:
1001
+ x = checkpoint.checkpoint(blk, x, attn_mask)
1002
+ else:
1003
+ x = blk(x, attn_mask)
1004
+ if self.downsample is not None:
1005
+ x_down = self.downsample(x, H, W)
1006
+ Wh, Ww = (H + 1) // 2, (W + 1) // 2
1007
+ return x, H, W, x_down, Wh, Ww
1008
+ else:
1009
+ return x, H, W, x, H, W
1010
+
1011
+
1012
+ class PatchEmbed(nn.Module):
1013
+ """ Image to Patch Embedding
1014
+
1015
+ Args:
1016
+ patch_size (int): Patch token size. Default: 4.
1017
+ in_channels (int): Number of input image channels. Default: 3.
1018
+ embed_dim (int): Number of linear projection output channels. Default: 96.
1019
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
1020
+ """
1021
+
1022
+ def __init__(self, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None):
1023
+ super().__init__()
1024
+ patch_size = to_2tuple(patch_size)
1025
+ self.patch_size = patch_size
1026
+
1027
+ self.in_channels = in_channels
1028
+ self.embed_dim = embed_dim
1029
+
1030
+ self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
1031
+ if norm_layer is not None:
1032
+ self.norm = norm_layer(embed_dim)
1033
+ else:
1034
+ self.norm = None
1035
+
1036
+ def forward(self, x):
1037
+ """Forward function."""
1038
+ # padding
1039
+ _, _, H, W = x.size()
1040
+ if W % self.patch_size[1] != 0:
1041
+ x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
1042
+ if H % self.patch_size[0] != 0:
1043
+ x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
1044
+
1045
+ x = self.proj(x) # B C Wh Ww
1046
+ if self.norm is not None:
1047
+ Wh, Ww = x.size(2), x.size(3)
1048
+ x = x.flatten(2).transpose(1, 2)
1049
+ x = self.norm(x)
1050
+ x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
1051
+
1052
+ return x
1053
+
1054
+
1055
+ class SwinTransformer(nn.Module):
1056
+ """ Swin Transformer backbone.
1057
+ A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
1058
+ https://arxiv.org/pdf/2103.14030
1059
+
1060
+ Args:
1061
+ pretrain_img_size (int): Input image size for training the pretrained model,
1062
+ used in absolute postion embedding. Default 224.
1063
+ patch_size (int | tuple(int)): Patch size. Default: 4.
1064
+ in_channels (int): Number of input image channels. Default: 3.
1065
+ embed_dim (int): Number of linear projection output channels. Default: 96.
1066
+ depths (tuple[int]): Depths of each Swin Transformer stage.
1067
+ num_heads (tuple[int]): Number of attention head of each stage.
1068
+ window_size (int): Window size. Default: 7.
1069
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
1070
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
1071
+ qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
1072
+ drop_rate (float): Dropout rate.
1073
+ attn_drop_rate (float): Attention dropout rate. Default: 0.
1074
+ drop_path_rate (float): Stochastic depth rate. Default: 0.2.
1075
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
1076
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
1077
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True.
1078
+ out_indices (Sequence[int]): Output from which stages.
1079
+ frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
1080
+ -1 means not freezing any parameters.
1081
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
1082
+ """
1083
+
1084
+ def __init__(self,
1085
+ pretrain_img_size=224,
1086
+ patch_size=4,
1087
+ in_channels=3,
1088
+ embed_dim=96,
1089
+ depths=[2, 2, 6, 2],
1090
+ num_heads=[3, 6, 12, 24],
1091
+ window_size=7,
1092
+ mlp_ratio=4.,
1093
+ qkv_bias=True,
1094
+ qk_scale=None,
1095
+ drop_rate=0.,
1096
+ attn_drop_rate=0.,
1097
+ drop_path_rate=0.2,
1098
+ norm_layer=nn.LayerNorm,
1099
+ ape=False,
1100
+ patch_norm=True,
1101
+ out_indices=(0, 1, 2, 3),
1102
+ frozen_stages=-1,
1103
+ use_checkpoint=False):
1104
+ super().__init__()
1105
+
1106
+ self.pretrain_img_size = pretrain_img_size
1107
+ self.num_layers = len(depths)
1108
+ self.embed_dim = embed_dim
1109
+ self.ape = ape
1110
+ self.patch_norm = patch_norm
1111
+ self.out_indices = out_indices
1112
+ self.frozen_stages = frozen_stages
1113
+
1114
+ # split image into non-overlapping patches
1115
+ self.patch_embed = PatchEmbed(
1116
+ patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim,
1117
+ norm_layer=norm_layer if self.patch_norm else None)
1118
+
1119
+ # absolute position embedding
1120
+ if self.ape:
1121
+ pretrain_img_size = to_2tuple(pretrain_img_size)
1122
+ patch_size = to_2tuple(patch_size)
1123
+ patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
1124
+
1125
+ self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
1126
+ trunc_normal_(self.absolute_pos_embed, std=.02)
1127
+
1128
+ self.pos_drop = nn.Dropout(p=drop_rate)
1129
+
1130
+ # stochastic depth
1131
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
1132
+
1133
+ # build layers
1134
+ self.layers = nn.ModuleList()
1135
+ for i_layer in range(self.num_layers):
1136
+ layer = BasicLayer(
1137
+ dim=int(embed_dim * 2 ** i_layer),
1138
+ depth=depths[i_layer],
1139
+ num_heads=num_heads[i_layer],
1140
+ window_size=window_size,
1141
+ mlp_ratio=mlp_ratio,
1142
+ qkv_bias=qkv_bias,
1143
+ qk_scale=qk_scale,
1144
+ drop=drop_rate,
1145
+ attn_drop=attn_drop_rate,
1146
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
1147
+ norm_layer=norm_layer,
1148
+ downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
1149
+ use_checkpoint=use_checkpoint)
1150
+ self.layers.append(layer)
1151
+
1152
+ num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
1153
+ self.num_features = num_features
1154
+
1155
+ # add a norm layer for each output
1156
+ for i_layer in out_indices:
1157
+ layer = norm_layer(num_features[i_layer])
1158
+ layer_name = f'norm{i_layer}'
1159
+ self.add_module(layer_name, layer)
1160
+
1161
+ self._freeze_stages()
1162
+
1163
+ def _freeze_stages(self):
1164
+ if self.frozen_stages >= 0:
1165
+ self.patch_embed.eval()
1166
+ for param in self.patch_embed.parameters():
1167
+ param.requires_grad = False
1168
+
1169
+ if self.frozen_stages >= 1 and self.ape:
1170
+ self.absolute_pos_embed.requires_grad = False
1171
+
1172
+ if self.frozen_stages >= 2:
1173
+ self.pos_drop.eval()
1174
+ for i in range(0, self.frozen_stages - 1):
1175
+ m = self.layers[i]
1176
+ m.eval()
1177
+ for param in m.parameters():
1178
+ param.requires_grad = False
1179
+
1180
+
1181
+ def forward(self, x):
1182
+ """Forward function."""
1183
+ x = self.patch_embed(x)
1184
+
1185
+ Wh, Ww = x.size(2), x.size(3)
1186
+ if self.ape:
1187
+ # interpolate the position embedding to the corresponding size
1188
+ absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
1189
+ x = (x + absolute_pos_embed) # B Wh*Ww C
1190
+
1191
+ outs = []#x.contiguous()]
1192
+ x = x.flatten(2).transpose(1, 2)
1193
+ x = self.pos_drop(x)
1194
+ for i in range(self.num_layers):
1195
+ layer = self.layers[i]
1196
+ x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
1197
+
1198
+ if i in self.out_indices:
1199
+ norm_layer = getattr(self, f'norm{i}')
1200
+ x_out = norm_layer(x_out)
1201
+
1202
+ out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
1203
+ outs.append(out)
1204
+
1205
+ return tuple(outs)
1206
+
1207
+ def train(self, mode=True):
1208
+ """Convert the model into training mode while keep layers freezed."""
1209
+ super(SwinTransformer, self).train(mode)
1210
+ self._freeze_stages()
1211
+
1212
+ def swin_v1_t():
1213
+ model = SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7)
1214
+ return model
1215
+
1216
+ def swin_v1_s():
1217
+ model = SwinTransformer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7)
1218
+ return model
1219
+
1220
+ def swin_v1_b():
1221
+ model = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
1222
+ return model
1223
+
1224
+ def swin_v1_l():
1225
+ model = SwinTransformer(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12)
1226
+ return model
1227
+
1228
+
1229
+
1230
+ ### models/modules/deform_conv.py
1231
+
1232
+ import torch
1233
+ import torch.nn as nn
1234
+ from torchvision.ops import deform_conv2d
1235
+
1236
+
1237
+ class DeformableConv2d(nn.Module):
1238
+ def __init__(self,
1239
+ in_channels,
1240
+ out_channels,
1241
+ kernel_size=3,
1242
+ stride=1,
1243
+ padding=1,
1244
+ bias=False):
1245
+
1246
+ super(DeformableConv2d, self).__init__()
1247
+
1248
+ assert type(kernel_size) == tuple or type(kernel_size) == int
1249
+
1250
+ kernel_size = kernel_size if type(kernel_size) == tuple else (kernel_size, kernel_size)
1251
+ self.stride = stride if type(stride) == tuple else (stride, stride)
1252
+ self.padding = padding
1253
+
1254
+ self.offset_conv = nn.Conv2d(in_channels,
1255
+ 2 * kernel_size[0] * kernel_size[1],
1256
+ kernel_size=kernel_size,
1257
+ stride=stride,
1258
+ padding=self.padding,
1259
+ bias=True)
1260
+
1261
+ nn.init.constant_(self.offset_conv.weight, 0.)
1262
+ nn.init.constant_(self.offset_conv.bias, 0.)
1263
+
1264
+ self.modulator_conv = nn.Conv2d(in_channels,
1265
+ 1 * kernel_size[0] * kernel_size[1],
1266
+ kernel_size=kernel_size,
1267
+ stride=stride,
1268
+ padding=self.padding,
1269
+ bias=True)
1270
+
1271
+ nn.init.constant_(self.modulator_conv.weight, 0.)
1272
+ nn.init.constant_(self.modulator_conv.bias, 0.)
1273
+
1274
+ self.regular_conv = nn.Conv2d(in_channels,
1275
+ out_channels=out_channels,
1276
+ kernel_size=kernel_size,
1277
+ stride=stride,
1278
+ padding=self.padding,
1279
+ bias=bias)
1280
+
1281
+ def forward(self, x):
1282
+ #h, w = x.shape[2:]
1283
+ #max_offset = max(h, w)/4.
1284
+
1285
+ offset = self.offset_conv(x)#.clamp(-max_offset, max_offset)
1286
+ modulator = 2. * torch.sigmoid(self.modulator_conv(x))
1287
+
1288
+ x = deform_conv2d(
1289
+ input=x,
1290
+ offset=offset,
1291
+ weight=self.regular_conv.weight,
1292
+ bias=self.regular_conv.bias,
1293
+ padding=self.padding,
1294
+ mask=modulator,
1295
+ stride=self.stride,
1296
+ )
1297
+ return x
1298
+
1299
+
1300
+
1301
+
1302
+ ### utils.py
1303
+
1304
+ import torch.nn as nn
1305
+
1306
+
1307
+ def build_act_layer(act_layer):
1308
+ if act_layer == 'ReLU':
1309
+ return nn.ReLU(inplace=True)
1310
+ elif act_layer == 'SiLU':
1311
+ return nn.SiLU(inplace=True)
1312
+ elif act_layer == 'GELU':
1313
+ return nn.GELU()
1314
+
1315
+ raise NotImplementedError(f'build_act_layer does not support {act_layer}')
1316
+
1317
+
1318
+ def build_norm_layer(dim,
1319
+ norm_layer,
1320
+ in_format='channels_last',
1321
+ out_format='channels_last',
1322
+ eps=1e-6):
1323
+ layers = []
1324
+ if norm_layer == 'BN':
1325
+ if in_format == 'channels_last':
1326
+ layers.append(to_channels_first())
1327
+ layers.append(nn.BatchNorm2d(dim))
1328
+ if out_format == 'channels_last':
1329
+ layers.append(to_channels_last())
1330
+ elif norm_layer == 'LN':
1331
+ if in_format == 'channels_first':
1332
+ layers.append(to_channels_last())
1333
+ layers.append(nn.LayerNorm(dim, eps=eps))
1334
+ if out_format == 'channels_first':
1335
+ layers.append(to_channels_first())
1336
+ else:
1337
+ raise NotImplementedError(
1338
+ f'build_norm_layer does not support {norm_layer}')
1339
+ return nn.Sequential(*layers)
1340
+
1341
+
1342
+ class to_channels_first(nn.Module):
1343
+
1344
+ def __init__(self):
1345
+ super().__init__()
1346
+
1347
+ def forward(self, x):
1348
+ return x.permute(0, 3, 1, 2)
1349
+
1350
+
1351
+ class to_channels_last(nn.Module):
1352
+
1353
+ def __init__(self):
1354
+ super().__init__()
1355
+
1356
+ def forward(self, x):
1357
+ return x.permute(0, 2, 3, 1)
1358
+
1359
+
1360
+
1361
+ ### dataset.py
1362
+
1363
+ _class_labels_TR_sorted = (
1364
+ 'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, '
1365
+ 'BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, '
1366
+ 'CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, '
1367
+ 'Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, '
1368
+ 'Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, '
1369
+ 'Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, '
1370
+ 'KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, '
1371
+ 'Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, '
1372
+ 'OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, '
1373
+ 'RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, '
1374
+ 'ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, '
1375
+ 'Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, '
1376
+ 'TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, '
1377
+ 'UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht'
1378
+ )
1379
+ class_labels_TR_sorted = _class_labels_TR_sorted.split(', ')
1380
+
1381
+
1382
+ ### models/backbones/build_backbones.py
1383
+
1384
+ import torch
1385
+ import torch.nn as nn
1386
+ from collections import OrderedDict
1387
+ from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights
1388
+ # from models.pvt_v2 import pvt_v2_b0, pvt_v2_b1, pvt_v2_b2, pvt_v2_b5
1389
+ # from models.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l
1390
+ # from config import Config
1391
+
1392
+
1393
+ config = Config()
1394
+
1395
+ def build_backbone(bb_name, pretrained=True, params_settings=''):
1396
+ if bb_name == 'vgg16':
1397
+ bb_net = list(vgg16(pretrained=VGG16_Weights.DEFAULT if pretrained else None).children())[0]
1398
+ bb = nn.Sequential(OrderedDict({'conv1': bb_net[:4], 'conv2': bb_net[4:9], 'conv3': bb_net[9:16], 'conv4': bb_net[16:23]}))
1399
+ elif bb_name == 'vgg16bn':
1400
+ bb_net = list(vgg16_bn(pretrained=VGG16_BN_Weights.DEFAULT if pretrained else None).children())[0]
1401
+ bb = nn.Sequential(OrderedDict({'conv1': bb_net[:6], 'conv2': bb_net[6:13], 'conv3': bb_net[13:23], 'conv4': bb_net[23:33]}))
1402
+ elif bb_name == 'resnet50':
1403
+ bb_net = list(resnet50(pretrained=ResNet50_Weights.DEFAULT if pretrained else None).children())
1404
+ bb = nn.Sequential(OrderedDict({'conv1': nn.Sequential(*bb_net[0:3]), 'conv2': bb_net[4], 'conv3': bb_net[5], 'conv4': bb_net[6]}))
1405
+ else:
1406
+ bb = eval('{}({})'.format(bb_name, params_settings))
1407
+ if pretrained:
1408
+ bb = load_weights(bb, bb_name)
1409
+ return bb
1410
+
1411
+ def load_weights(model, model_name):
1412
+ save_model = torch.load(config.weights[model_name], map_location='cpu')
1413
+ model_dict = model.state_dict()
1414
+ state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model.items() if k in model_dict.keys()}
1415
+ # to ignore the weights with mismatched size when I modify the backbone itself.
1416
+ if not state_dict:
1417
+ save_model_keys = list(save_model.keys())
1418
+ sub_item = save_model_keys[0] if len(save_model_keys) == 1 else None
1419
+ state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model[sub_item].items() if k in model_dict.keys()}
1420
+ if not state_dict or not sub_item:
1421
+ print('Weights are not successully loaded. Check the state dict of weights file.')
1422
+ return None
1423
+ else:
1424
+ print('Found correct weights in the "{}" item of loaded state_dict.'.format(sub_item))
1425
+ model_dict.update(state_dict)
1426
+ model.load_state_dict(model_dict)
1427
+ return model
1428
+
1429
+
1430
+
1431
+ ### models/modules/decoder_blocks.py
1432
+
1433
+ import torch
1434
+ import torch.nn as nn
1435
+ # from models.aspp import ASPP, ASPPDeformable
1436
+ # from config import Config
1437
+
1438
+
1439
+ # config = Config()
1440
+
1441
+
1442
+ class BasicDecBlk(nn.Module):
1443
+ def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
1444
+ super(BasicDecBlk, self).__init__()
1445
+ inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
1446
+ self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
1447
+ self.relu_in = nn.ReLU(inplace=True)
1448
+ if config.dec_att == 'ASPP':
1449
+ self.dec_att = ASPP(in_channels=inter_channels)
1450
+ elif config.dec_att == 'ASPPDeformable':
1451
+ self.dec_att = ASPPDeformable(in_channels=inter_channels)
1452
+ self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
1453
+ self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
1454
+ self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
1455
+
1456
+ def forward(self, x):
1457
+ x = self.conv_in(x)
1458
+ x = self.bn_in(x)
1459
+ x = self.relu_in(x)
1460
+ if hasattr(self, 'dec_att'):
1461
+ x = self.dec_att(x)
1462
+ x = self.conv_out(x)
1463
+ x = self.bn_out(x)
1464
+ return x
1465
+
1466
+
1467
+ class ResBlk(nn.Module):
1468
+ def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
1469
+ super(ResBlk, self).__init__()
1470
+ if out_channels is None:
1471
+ out_channels = in_channels
1472
+ inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
1473
+
1474
+ self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
1475
+ self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
1476
+ self.relu_in = nn.ReLU(inplace=True)
1477
+
1478
+ if config.dec_att == 'ASPP':
1479
+ self.dec_att = ASPP(in_channels=inter_channels)
1480
+ elif config.dec_att == 'ASPPDeformable':
1481
+ self.dec_att = ASPPDeformable(in_channels=inter_channels)
1482
+
1483
+ self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
1484
+ self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
1485
+
1486
+ self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
1487
+
1488
+ def forward(self, x):
1489
+ _x = self.conv_resi(x)
1490
+ x = self.conv_in(x)
1491
+ x = self.bn_in(x)
1492
+ x = self.relu_in(x)
1493
+ if hasattr(self, 'dec_att'):
1494
+ x = self.dec_att(x)
1495
+ x = self.conv_out(x)
1496
+ x = self.bn_out(x)
1497
+ return x + _x
1498
+
1499
+
1500
+
1501
+ ### models/modules/lateral_blocks.py
1502
+
1503
+ import numpy as np
1504
+ import torch
1505
+ import torch.nn as nn
1506
+ import torch.nn.functional as F
1507
+ from functools import partial
1508
+
1509
+ # from config import Config
1510
+
1511
+
1512
+ # config = Config()
1513
+
1514
+
1515
+ class BasicLatBlk(nn.Module):
1516
+ def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
1517
+ super(BasicLatBlk, self).__init__()
1518
+ inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
1519
+ self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
1520
+
1521
+ def forward(self, x):
1522
+ x = self.conv(x)
1523
+ return x
1524
+
1525
+
1526
+
1527
+ ### models/modules/aspp.py
1528
+
1529
+ import torch
1530
+ import torch.nn as nn
1531
+ import torch.nn.functional as F
1532
+ # from models.deform_conv import DeformableConv2d
1533
+ # from config import Config
1534
+
1535
+
1536
+ # config = Config()
1537
+
1538
+
1539
+ class _ASPPModule(nn.Module):
1540
+ def __init__(self, in_channels, planes, kernel_size, padding, dilation):
1541
+ super(_ASPPModule, self).__init__()
1542
+ self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size,
1543
+ stride=1, padding=padding, dilation=dilation, bias=False)
1544
+ self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
1545
+ self.relu = nn.ReLU(inplace=True)
1546
+
1547
+ def forward(self, x):
1548
+ x = self.atrous_conv(x)
1549
+ x = self.bn(x)
1550
+
1551
+ return self.relu(x)
1552
+
1553
+
1554
+ class ASPP(nn.Module):
1555
+ def __init__(self, in_channels=64, out_channels=None, output_stride=16):
1556
+ super(ASPP, self).__init__()
1557
+ self.down_scale = 1
1558
+ if out_channels is None:
1559
+ out_channels = in_channels
1560
+ self.in_channelster = 256 // self.down_scale
1561
+ if output_stride == 16:
1562
+ dilations = [1, 6, 12, 18]
1563
+ elif output_stride == 8:
1564
+ dilations = [1, 12, 24, 36]
1565
+ else:
1566
+ raise NotImplementedError
1567
+
1568
+ self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0])
1569
+ self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1])
1570
+ self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2])
1571
+ self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3])
1572
+
1573
+ self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
1574
+ nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
1575
+ nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
1576
+ nn.ReLU(inplace=True))
1577
+ self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
1578
+ self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
1579
+ self.relu = nn.ReLU(inplace=True)
1580
+ self.dropout = nn.Dropout(0.5)
1581
+
1582
+ def forward(self, x):
1583
+ x1 = self.aspp1(x)
1584
+ x2 = self.aspp2(x)
1585
+ x3 = self.aspp3(x)
1586
+ x4 = self.aspp4(x)
1587
+ x5 = self.global_avg_pool(x)
1588
+ x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
1589
+ x = torch.cat((x1, x2, x3, x4, x5), dim=1)
1590
+
1591
+ x = self.conv1(x)
1592
+ x = self.bn1(x)
1593
+ x = self.relu(x)
1594
+
1595
+ return self.dropout(x)
1596
+
1597
+
1598
+ ##################### Deformable
1599
+ class _ASPPModuleDeformable(nn.Module):
1600
+ def __init__(self, in_channels, planes, kernel_size, padding):
1601
+ super(_ASPPModuleDeformable, self).__init__()
1602
+ self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size,
1603
+ stride=1, padding=padding, bias=False)
1604
+ self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
1605
+ self.relu = nn.ReLU(inplace=True)
1606
+
1607
+ def forward(self, x):
1608
+ x = self.atrous_conv(x)
1609
+ x = self.bn(x)
1610
+
1611
+ return self.relu(x)
1612
+
1613
+
1614
+ class ASPPDeformable(nn.Module):
1615
+ def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]):
1616
+ super(ASPPDeformable, self).__init__()
1617
+ self.down_scale = 1
1618
+ if out_channels is None:
1619
+ out_channels = in_channels
1620
+ self.in_channelster = 256 // self.down_scale
1621
+
1622
+ self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0)
1623
+ self.aspp_deforms = nn.ModuleList([
1624
+ _ASPPModuleDeformable(in_channels, self.in_channelster, conv_size, padding=int(conv_size//2)) for conv_size in parallel_block_sizes
1625
+ ])
1626
+
1627
+ self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
1628
+ nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
1629
+ nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
1630
+ nn.ReLU(inplace=True))
1631
+ self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False)
1632
+ self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
1633
+ self.relu = nn.ReLU(inplace=True)
1634
+ self.dropout = nn.Dropout(0.5)
1635
+
1636
+ def forward(self, x):
1637
+ x1 = self.aspp1(x)
1638
+ x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms]
1639
+ x5 = self.global_avg_pool(x)
1640
+ x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
1641
+ x = torch.cat((x1, *x_aspp_deforms, x5), dim=1)
1642
+
1643
+ x = self.conv1(x)
1644
+ x = self.bn1(x)
1645
+ x = self.relu(x)
1646
+
1647
+ return self.dropout(x)
1648
+
1649
+
1650
+
1651
+ ### models/refinement/refiner.py
1652
+
1653
+ import torch
1654
+ import torch.nn as nn
1655
+ from collections import OrderedDict
1656
+ import torch
1657
+ import torch.nn as nn
1658
+ import torch.nn.functional as F
1659
+ from torchvision.models import vgg16, vgg16_bn
1660
+ from torchvision.models import resnet50
1661
+
1662
+ # from config import Config
1663
+ # from dataset import class_labels_TR_sorted
1664
+ # from models.build_backbone import build_backbone
1665
+ # from models.decoder_blocks import BasicDecBlk
1666
+ # from models.lateral_blocks import BasicLatBlk
1667
+ # from models.ing import *
1668
+ # from models.stem_layer import StemLayer
1669
+
1670
+
1671
+ class RefinerPVTInChannels4(nn.Module):
1672
+ def __init__(self, in_channels=3+1):
1673
+ super(RefinerPVTInChannels4, self).__init__()
1674
+ self.config = Config()
1675
+ self.epoch = 1
1676
+ self.bb = build_backbone(self.config.bb, params_settings='in_channels=4')
1677
+
1678
+ lateral_channels_in_collection = {
1679
+ 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
1680
+ 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
1681
+ 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
1682
+ }
1683
+ channels = lateral_channels_in_collection[self.config.bb]
1684
+ self.squeeze_module = BasicDecBlk(channels[0], channels[0])
1685
+
1686
+ self.decoder = Decoder(channels)
1687
+
1688
+ if 0:
1689
+ for key, value in self.named_parameters():
1690
+ if 'bb.' in key:
1691
+ value.requires_grad = False
1692
+
1693
+ def forward(self, x):
1694
+ if isinstance(x, list):
1695
+ x = torch.cat(x, dim=1)
1696
+ ########## Encoder ##########
1697
+ if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
1698
+ x1 = self.bb.conv1(x)
1699
+ x2 = self.bb.conv2(x1)
1700
+ x3 = self.bb.conv3(x2)
1701
+ x4 = self.bb.conv4(x3)
1702
+ else:
1703
+ x1, x2, x3, x4 = self.bb(x)
1704
+
1705
+ x4 = self.squeeze_module(x4)
1706
+
1707
+ ########## Decoder ##########
1708
+
1709
+ features = [x, x1, x2, x3, x4]
1710
+ scaled_preds = self.decoder(features)
1711
+
1712
+ return scaled_preds
1713
+
1714
+
1715
+ class Refiner(nn.Module):
1716
+ def __init__(self, in_channels=3+1):
1717
+ super(Refiner, self).__init__()
1718
+ self.config = Config()
1719
+ self.epoch = 1
1720
+ self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
1721
+ self.bb = build_backbone(self.config.bb)
1722
+
1723
+ lateral_channels_in_collection = {
1724
+ 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
1725
+ 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
1726
+ 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
1727
+ }
1728
+ channels = lateral_channels_in_collection[self.config.bb]
1729
+ self.squeeze_module = BasicDecBlk(channels[0], channels[0])
1730
+
1731
+ self.decoder = Decoder(channels)
1732
+
1733
+ if 0:
1734
+ for key, value in self.named_parameters():
1735
+ if 'bb.' in key:
1736
+ value.requires_grad = False
1737
+
1738
+ def forward(self, x):
1739
+ if isinstance(x, list):
1740
+ x = torch.cat(x, dim=1)
1741
+ x = self.stem_layer(x)
1742
+ ########## Encoder ##########
1743
+ if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
1744
+ x1 = self.bb.conv1(x)
1745
+ x2 = self.bb.conv2(x1)
1746
+ x3 = self.bb.conv3(x2)
1747
+ x4 = self.bb.conv4(x3)
1748
+ else:
1749
+ x1, x2, x3, x4 = self.bb(x)
1750
+
1751
+ x4 = self.squeeze_module(x4)
1752
+
1753
+ ########## Decoder ##########
1754
+
1755
+ features = [x, x1, x2, x3, x4]
1756
+ scaled_preds = self.decoder(features)
1757
+
1758
+ return scaled_preds
1759
+
1760
+
1761
+ class Decoder(nn.Module):
1762
+ def __init__(self, channels):
1763
+ super(Decoder, self).__init__()
1764
+ self.config = Config()
1765
+ DecoderBlock = eval('BasicDecBlk')
1766
+ LateralBlock = eval('BasicLatBlk')
1767
+
1768
+ self.decoder_block4 = DecoderBlock(channels[0], channels[1])
1769
+ self.decoder_block3 = DecoderBlock(channels[1], channels[2])
1770
+ self.decoder_block2 = DecoderBlock(channels[2], channels[3])
1771
+ self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2)
1772
+
1773
+ self.lateral_block4 = LateralBlock(channels[1], channels[1])
1774
+ self.lateral_block3 = LateralBlock(channels[2], channels[2])
1775
+ self.lateral_block2 = LateralBlock(channels[3], channels[3])
1776
+
1777
+ if self.config.ms_supervision:
1778
+ self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
1779
+ self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
1780
+ self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
1781
+ self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0))
1782
+
1783
+ def forward(self, features):
1784
+ x, x1, x2, x3, x4 = features
1785
+ outs = []
1786
+ p4 = self.decoder_block4(x4)
1787
+ _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
1788
+ _p3 = _p4 + self.lateral_block4(x3)
1789
+
1790
+ p3 = self.decoder_block3(_p3)
1791
+ _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
1792
+ _p2 = _p3 + self.lateral_block3(x2)
1793
+
1794
+ p2 = self.decoder_block2(_p2)
1795
+ _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
1796
+ _p1 = _p2 + self.lateral_block2(x1)
1797
+
1798
+ _p1 = self.decoder_block1(_p1)
1799
+ _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
1800
+ p1_out = self.conv_out1(_p1)
1801
+
1802
+ if self.config.ms_supervision:
1803
+ outs.append(self.conv_ms_spvn_4(p4))
1804
+ outs.append(self.conv_ms_spvn_3(p3))
1805
+ outs.append(self.conv_ms_spvn_2(p2))
1806
+ outs.append(p1_out)
1807
+ return outs
1808
+
1809
+
1810
+ class RefUNet(nn.Module):
1811
+ # Refinement
1812
+ def __init__(self, in_channels=3+1):
1813
+ super(RefUNet, self).__init__()
1814
+ self.encoder_1 = nn.Sequential(
1815
+ nn.Conv2d(in_channels, 64, 3, 1, 1),
1816
+ nn.Conv2d(64, 64, 3, 1, 1),
1817
+ nn.BatchNorm2d(64),
1818
+ nn.ReLU(inplace=True)
1819
+ )
1820
+
1821
+ self.encoder_2 = nn.Sequential(
1822
+ nn.MaxPool2d(2, 2, ceil_mode=True),
1823
+ nn.Conv2d(64, 64, 3, 1, 1),
1824
+ nn.BatchNorm2d(64),
1825
+ nn.ReLU(inplace=True)
1826
+ )
1827
+
1828
+ self.encoder_3 = nn.Sequential(
1829
+ nn.MaxPool2d(2, 2, ceil_mode=True),
1830
+ nn.Conv2d(64, 64, 3, 1, 1),
1831
+ nn.BatchNorm2d(64),
1832
+ nn.ReLU(inplace=True)
1833
+ )
1834
+
1835
+ self.encoder_4 = nn.Sequential(
1836
+ nn.MaxPool2d(2, 2, ceil_mode=True),
1837
+ nn.Conv2d(64, 64, 3, 1, 1),
1838
+ nn.BatchNorm2d(64),
1839
+ nn.ReLU(inplace=True)
1840
+ )
1841
+
1842
+ self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
1843
+ #####
1844
+ self.decoder_5 = nn.Sequential(
1845
+ nn.Conv2d(64, 64, 3, 1, 1),
1846
+ nn.BatchNorm2d(64),
1847
+ nn.ReLU(inplace=True)
1848
+ )
1849
+ #####
1850
+ self.decoder_4 = nn.Sequential(
1851
+ nn.Conv2d(128, 64, 3, 1, 1),
1852
+ nn.BatchNorm2d(64),
1853
+ nn.ReLU(inplace=True)
1854
+ )
1855
+
1856
+ self.decoder_3 = nn.Sequential(
1857
+ nn.Conv2d(128, 64, 3, 1, 1),
1858
+ nn.BatchNorm2d(64),
1859
+ nn.ReLU(inplace=True)
1860
+ )
1861
+
1862
+ self.decoder_2 = nn.Sequential(
1863
+ nn.Conv2d(128, 64, 3, 1, 1),
1864
+ nn.BatchNorm2d(64),
1865
+ nn.ReLU(inplace=True)
1866
+ )
1867
+
1868
+ self.decoder_1 = nn.Sequential(
1869
+ nn.Conv2d(128, 64, 3, 1, 1),
1870
+ nn.BatchNorm2d(64),
1871
+ nn.ReLU(inplace=True)
1872
+ )
1873
+
1874
+ self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)
1875
+
1876
+ self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
1877
+
1878
+ def forward(self, x):
1879
+ outs = []
1880
+ if isinstance(x, list):
1881
+ x = torch.cat(x, dim=1)
1882
+ hx = x
1883
+
1884
+ hx1 = self.encoder_1(hx)
1885
+ hx2 = self.encoder_2(hx1)
1886
+ hx3 = self.encoder_3(hx2)
1887
+ hx4 = self.encoder_4(hx3)
1888
+
1889
+ hx = self.decoder_5(self.pool4(hx4))
1890
+ hx = torch.cat((self.upscore2(hx), hx4), 1)
1891
+
1892
+ d4 = self.decoder_4(hx)
1893
+ hx = torch.cat((self.upscore2(d4), hx3), 1)
1894
+
1895
+ d3 = self.decoder_3(hx)
1896
+ hx = torch.cat((self.upscore2(d3), hx2), 1)
1897
+
1898
+ d2 = self.decoder_2(hx)
1899
+ hx = torch.cat((self.upscore2(d2), hx1), 1)
1900
+
1901
+ d1 = self.decoder_1(hx)
1902
+
1903
+ x = self.conv_d0(d1)
1904
+ outs.append(x)
1905
+ return outs
1906
+
1907
+
1908
+
1909
+ ### models/stem_layer.py
1910
+
1911
+ import torch.nn as nn
1912
+ # from utils import build_act_layer, build_norm_layer
1913
+
1914
+
1915
+ class StemLayer(nn.Module):
1916
+ r""" Stem layer of InternImage
1917
+ Args:
1918
+ in_channels (int): number of input channels
1919
+ out_channels (int): number of output channels
1920
+ act_layer (str): activation layer
1921
+ norm_layer (str): normalization layer
1922
+ """
1923
+
1924
+ def __init__(self,
1925
+ in_channels=3+1,
1926
+ inter_channels=48,
1927
+ out_channels=96,
1928
+ act_layer='GELU',
1929
+ norm_layer='BN'):
1930
+ super().__init__()
1931
+ self.conv1 = nn.Conv2d(in_channels,
1932
+ inter_channels,
1933
+ kernel_size=3,
1934
+ stride=1,
1935
+ padding=1)
1936
+ self.norm1 = build_norm_layer(
1937
+ inter_channels, norm_layer, 'channels_first', 'channels_first'
1938
+ )
1939
+ self.act = build_act_layer(act_layer)
1940
+ self.conv2 = nn.Conv2d(inter_channels,
1941
+ out_channels,
1942
+ kernel_size=3,
1943
+ stride=1,
1944
+ padding=1)
1945
+ self.norm2 = build_norm_layer(
1946
+ out_channels, norm_layer, 'channels_first', 'channels_first'
1947
+ )
1948
+
1949
+ def forward(self, x):
1950
+ x = self.conv1(x)
1951
+ x = self.norm1(x)
1952
+ x = self.act(x)
1953
+ x = self.conv2(x)
1954
+ x = self.norm2(x)
1955
+ return x
1956
+
1957
+
1958
+ ### models/birefnet.py
1959
+
1960
+ import torch
1961
+ import torch.nn as nn
1962
+ import torch.nn.functional as F
1963
+ from kornia.filters import laplacian
1964
+ from transformers import PreTrainedModel
1965
+
1966
+ # from config import Config
1967
+ # from dataset import class_labels_TR_sorted
1968
+ # from models.build_backbone import build_backbone
1969
+ # from models.decoder_blocks import BasicDecBlk, ResBlk, HierarAttDecBlk
1970
+ # from models.lateral_blocks import BasicLatBlk
1971
+ # from models.aspp import ASPP, ASPPDeformable
1972
+ # from models.ing import *
1973
+ # from models.refiner import Refiner, RefinerPVTInChannels4, RefUNet
1974
+ # from models.stem_layer import StemLayer
1975
+ from .BiRefNet_config import BiRefNetConfig
1976
+
1977
+
1978
+ class BiRefNet(
1979
+ PreTrainedModel
1980
+ ):
1981
+ config_class = BiRefNetConfig
1982
+ def __init__(self, bb_pretrained=True, config=BiRefNetConfig()):
1983
+ super(BiRefNet, self).__init__(config)
1984
+ bb_pretrained = config.bb_pretrained
1985
+ self.config = Config()
1986
+ self.epoch = 1
1987
+ self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained)
1988
+
1989
+ channels = self.config.lateral_channels_in_collection
1990
+
1991
+ if self.config.auxiliary_classification:
1992
+ self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
1993
+ self.cls_head = nn.Sequential(
1994
+ nn.Linear(channels[0], len(class_labels_TR_sorted))
1995
+ )
1996
+
1997
+ if self.config.squeeze_block:
1998
+ self.squeeze_module = nn.Sequential(*[
1999
+ eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0])
2000
+ for _ in range(eval(self.config.squeeze_block.split('_x')[1]))
2001
+ ])
2002
+
2003
+ self.decoder = Decoder(channels)
2004
+
2005
+ if self.config.ender:
2006
+ self.dec_end = nn.Sequential(
2007
+ nn.Conv2d(1, 16, 3, 1, 1),
2008
+ nn.Conv2d(16, 1, 3, 1, 1),
2009
+ nn.ReLU(inplace=True),
2010
+ )
2011
+
2012
+ # refine patch-level segmentation
2013
+ if self.config.refine:
2014
+ if self.config.refine == 'itself':
2015
+ self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
2016
+ else:
2017
+ self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
2018
+
2019
+ if self.config.freeze_bb:
2020
+ # Freeze the backbone...
2021
+ print(self.named_parameters())
2022
+ for key, value in self.named_parameters():
2023
+ if 'bb.' in key and 'refiner.' not in key:
2024
+ value.requires_grad = False
2025
+
2026
+ def forward_enc(self, x):
2027
+ if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
2028
+ x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3)
2029
+ else:
2030
+ x1, x2, x3, x4 = self.bb(x)
2031
+ if self.config.mul_scl_ipt == 'cat':
2032
+ B, C, H, W = x.shape
2033
+ x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
2034
+ x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1)
2035
+ x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1)
2036
+ x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1)
2037
+ x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1)
2038
+ elif self.config.mul_scl_ipt == 'add':
2039
+ B, C, H, W = x.shape
2040
+ x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
2041
+ x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)
2042
+ x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)
2043
+ x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)
2044
+ x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)
2045
+ class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None
2046
+ if self.config.cxt:
2047
+ x4 = torch.cat(
2048
+ (
2049
+ *[
2050
+ F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True),
2051
+ F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True),
2052
+ F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True),
2053
+ ][-len(self.config.cxt):],
2054
+ x4
2055
+ ),
2056
+ dim=1
2057
+ )
2058
+ return (x1, x2, x3, x4), class_preds
2059
+
2060
+ def forward_ori(self, x):
2061
+ ########## Encoder ##########
2062
+ (x1, x2, x3, x4), class_preds = self.forward_enc(x)
2063
+ if self.config.squeeze_block:
2064
+ x4 = self.squeeze_module(x4)
2065
+ ########## Decoder ##########
2066
+ features = [x, x1, x2, x3, x4]
2067
+ if self.training and self.config.out_ref:
2068
+ features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5))
2069
+ scaled_preds = self.decoder(features)
2070
+ return scaled_preds, class_preds
2071
+
2072
+ def forward(self, x):
2073
+ scaled_preds, class_preds = self.forward_ori(x)
2074
+ class_preds_lst = [class_preds]
2075
+ return [scaled_preds, class_preds_lst] if self.training else scaled_preds
2076
+
2077
+
2078
+ class Decoder(nn.Module):
2079
+ def __init__(self, channels):
2080
+ super(Decoder, self).__init__()
2081
+ self.config = Config()
2082
+ DecoderBlock = eval(self.config.dec_blk)
2083
+ LateralBlock = eval(self.config.lat_blk)
2084
+
2085
+ if self.config.dec_ipt:
2086
+ self.split = self.config.dec_ipt_split
2087
+ N_dec_ipt = 64
2088
+ DBlock = SimpleConvs
2089
+ ic = 64
2090
+ ipt_cha_opt = 1
2091
+ self.ipt_blk5 = DBlock(2**10*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
2092
+ self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
2093
+ self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
2094
+ self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
2095
+ self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic)
2096
+ else:
2097
+ self.split = None
2098
+
2099
+ self.decoder_block4 = DecoderBlock(channels[0]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[1])
2100
+ self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
2101
+ self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
2102
+ self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
2103
+ self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0))
2104
+
2105
+ self.lateral_block4 = LateralBlock(channels[1], channels[1])
2106
+ self.lateral_block3 = LateralBlock(channels[2], channels[2])
2107
+ self.lateral_block2 = LateralBlock(channels[3], channels[3])
2108
+
2109
+ if self.config.ms_supervision:
2110
+ self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
2111
+ self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
2112
+ self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
2113
+
2114
+ if self.config.out_ref:
2115
+ _N = 16
2116
+ self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
2117
+ self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
2118
+ self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
2119
+
2120
+ self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2121
+ self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2122
+ self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2123
+
2124
+ self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2125
+ self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2126
+ self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2127
+
2128
+ def get_patches_batch(self, x, p):
2129
+ _size_h, _size_w = p.shape[2:]
2130
+ patches_batch = []
2131
+ for idx in range(x.shape[0]):
2132
+ columns_x = torch.split(x[idx], split_size_or_sections=_size_w, dim=-1)
2133
+ patches_x = []
2134
+ for column_x in columns_x:
2135
+ patches_x += [p.unsqueeze(0) for p in torch.split(column_x, split_size_or_sections=_size_h, dim=-2)]
2136
+ patch_sample = torch.cat(patches_x, dim=1)
2137
+ patches_batch.append(patch_sample)
2138
+ return torch.cat(patches_batch, dim=0)
2139
+
2140
+ def forward(self, features):
2141
+ if self.training and self.config.out_ref:
2142
+ outs_gdt_pred = []
2143
+ outs_gdt_label = []
2144
+ x, x1, x2, x3, x4, gdt_gt = features
2145
+ else:
2146
+ x, x1, x2, x3, x4 = features
2147
+ outs = []
2148
+
2149
+ if self.config.dec_ipt:
2150
+ patches_batch = self.get_patches_batch(x, x4) if self.split else x
2151
+ x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1)
2152
+ p4 = self.decoder_block4(x4)
2153
+ m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
2154
+ if self.config.out_ref:
2155
+ p4_gdt = self.gdt_convs_4(p4)
2156
+ if self.training:
2157
+ # >> GT:
2158
+ m4_dia = m4
2159
+ gdt_label_main_4 = gdt_gt * F.interpolate(m4_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
2160
+ outs_gdt_label.append(gdt_label_main_4)
2161
+ # >> Pred:
2162
+ gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt)
2163
+ outs_gdt_pred.append(gdt_pred_4)
2164
+ gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid()
2165
+ # >> Finally:
2166
+ p4 = p4 * gdt_attn_4
2167
+ _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
2168
+ _p3 = _p4 + self.lateral_block4(x3)
2169
+
2170
+ if self.config.dec_ipt:
2171
+ patches_batch = self.get_patches_batch(x, _p3) if self.split else x
2172
+ _p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
2173
+ p3 = self.decoder_block3(_p3)
2174
+ m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
2175
+ if self.config.out_ref:
2176
+ p3_gdt = self.gdt_convs_3(p3)
2177
+ if self.training:
2178
+ # >> GT:
2179
+ # m3 --dilation--> m3_dia
2180
+ # G_3^gt * m3_dia --> G_3^m, which is the label of gradient
2181
+ m3_dia = m3
2182
+ gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
2183
+ outs_gdt_label.append(gdt_label_main_3)
2184
+ # >> Pred:
2185
+ # p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx
2186
+ # F_3^G --sigmoid--> A_3^G
2187
+ gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt)
2188
+ outs_gdt_pred.append(gdt_pred_3)
2189
+ gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid()
2190
+ # >> Finally:
2191
+ # p3 = p3 * A_3^G
2192
+ p3 = p3 * gdt_attn_3
2193
+ _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
2194
+ _p2 = _p3 + self.lateral_block3(x2)
2195
+
2196
+ if self.config.dec_ipt:
2197
+ patches_batch = self.get_patches_batch(x, _p2) if self.split else x
2198
+ _p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
2199
+ p2 = self.decoder_block2(_p2)
2200
+ m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
2201
+ if self.config.out_ref:
2202
+ p2_gdt = self.gdt_convs_2(p2)
2203
+ if self.training:
2204
+ # >> GT:
2205
+ m2_dia = m2
2206
+ gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
2207
+ outs_gdt_label.append(gdt_label_main_2)
2208
+ # >> Pred:
2209
+ gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt)
2210
+ outs_gdt_pred.append(gdt_pred_2)
2211
+ gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid()
2212
+ # >> Finally:
2213
+ p2 = p2 * gdt_attn_2
2214
+ _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
2215
+ _p1 = _p2 + self.lateral_block2(x1)
2216
+
2217
+ if self.config.dec_ipt:
2218
+ patches_batch = self.get_patches_batch(x, _p1) if self.split else x
2219
+ _p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
2220
+ _p1 = self.decoder_block1(_p1)
2221
+ _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
2222
+
2223
+ if self.config.dec_ipt:
2224
+ patches_batch = self.get_patches_batch(x, _p1) if self.split else x
2225
+ _p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
2226
+ p1_out = self.conv_out1(_p1)
2227
+
2228
+ if self.config.ms_supervision:
2229
+ outs.append(m4)
2230
+ outs.append(m3)
2231
+ outs.append(m2)
2232
+ outs.append(p1_out)
2233
+ return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs)
2234
+
2235
+
2236
+ class SimpleConvs(nn.Module):
2237
+ def __init__(
2238
+ self, in_channels: int, out_channels: int, inter_channels=64
2239
+ ) -> None:
2240
+ super().__init__()
2241
+ self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
2242
+ self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
2243
+
2244
+ def forward(self, x):
2245
+ return self.conv_out(self.conv1(x))
collage5.png ADDED

Git LFS Details

  • SHA256: f9f802564aa1e3a7c90762c7e65b77007f081cb179cdd9b42607bad3b1fdaf16
  • Pointer size: 132 Bytes
  • Size of remote file: 4.52 MB
config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ZhengPeng7/BiRefNet",
3
+ "architectures": [
4
+ "BiRefNet"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "BiRefNet_config.BiRefNetConfig",
8
+ "AutoModelForImageSegmentation": "birefnet.BiRefNet"
9
+ },
10
+ "custom_pipelines": {
11
+ "image-segmentation": {
12
+ "pt": [
13
+ "AutoModelForImageSegmentation"
14
+ ],
15
+ "tf": [],
16
+ "type": "image"
17
+ }
18
+ },
19
+ "bb_pretrained": false
20
+ }
diagram1.png ADDED
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:566ed80c3d95f87ada6864d4cbe2290a1c5eb1c7bb0b123e984f60f76b02c3a7
3
+ size 884878856
onnx/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b486f08200f513f460da46dd701db5fbb47d79b4be4b708a19444bcd4e79958
3
+ size 1024331469
onnx/model_bnb4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadc9222fbffa53a348efea52d97475350ecee463a4a46f452e6e6b7b8757d25
3
+ size 355288046
onnx/model_fp16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dc47db40d113090ba5d7a13d8fcfd9ee4eda510ce92613219b2fe19da4746f6
3
+ size 513576499
onnx/model_int8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8ee7690d8c5e7fc45d7b4938ac2fe4eab63fdeddd537673cda2d4c6e74809af
3
+ size 366087445
onnx/model_q4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a813e0eab56c982b71254214f41fa860cc7b565a6f2aab55d1f99f41c646ece1
3
+ size 367451512
onnx/model_q4f16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bfeb5f93220eb19f6747c217b62cf04342840c4e973f55bf64e9762919f446d
3
+ size 233815293
onnx/model_quantized.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcea23951a378f92634834888896cc1eec54655366ae6e949282646ce17c5420
3
+ size 366087549
onnx/model_uint8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcea23951a378f92634834888896cc1eec54655366ae6e949282646ce17c5420
3
+ size 366087549
preprocessor_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_rescale": true,
4
+ "do_resize": true,
5
+ "feature_extractor_type": "ViTFeatureExtractor",
6
+ "image_mean": [
7
+ 0.485,
8
+ 0.456,
9
+ 0.406
10
+ ],
11
+ "image_processor_type": "ViTFeatureExtractor",
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 2,
18
+ "rescale_factor": 0.00392156862745098,
19
+ "size": {
20
+ "height": 1024,
21
+ "width": 1024
22
+ }
23
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0986c2881028a2d0ef9b638ab06bc4cfe7c529760d451eaa7098ade2592015f2
3
+ size 885079136
t4.png ADDED

Git LFS Details

  • SHA256: 43a9453f567d9bff7fe4481205575bbf302499379047ee6073247315452ba8fb
  • Pointer size: 132 Bytes
  • Size of remote file: 2.16 MB