JulesLT heloise-chomet commited on
Commit
11cbd79
·
verified ·
1 Parent(s): dbaf394

Update README.md (#5)

Browse files

- Update README.md (a9de64b6ea585c8f4884eb0ec2bf0fc85b77c397)


Co-authored-by: Heloise Chomet <heloise-chomet@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -6,7 +6,7 @@ Mace: Higher order equivariant message passing neural networks for fast and accu
6
 
7
  URL: https://arxiv.org/abs/2206.07697
8
  ## How to Use
9
- For complete usage instructions and more information, please refer to our [documentation](https://instadeep.github.io/mlip)
10
  ## Model architecture
11
  | Parameter | Value | Description |
12
  |----------------------------------|----------------------|--------------------------------------------------------------------------------------|
@@ -27,7 +27,7 @@ For complete usage instructions and more information, please refer to our [docum
27
 
28
 
29
  For more information about MACE hyperparameters,
30
- please refer to our [documentation](https://instadeep.github.io/mlip/api_reference/models/mace.html#mlip.models.visnet.config.MaceConfig)
31
  ## Training
32
  Training is performed over 220 epochs, with an exponential moving average (EMA) decay rate of 0.99.
33
  The model employs a MSE loss function with scheduled weights for the energy and force components.
@@ -47,7 +47,7 @@ We use our default MLIP optimizer in v1.0.0 with the following settings:
47
 
48
 
49
  For more information about the optimizer,
50
- please refer to our [documentation](https://instadeep.github.io/mlip/api_reference/training/optimizer.html#mlip.training.optimizer_config.OptimizerConfig)
51
  ## Dataset
52
  | Parameter | Value | Description |
53
  |-----------------------------|-------|--------------------------------------------|
@@ -59,7 +59,7 @@ please refer to our [documentation](https://instadeep.github.io/mlip/api_referen
59
 
60
  This model was trained on the [SPICE2_curated dataset](https://huggingface.co/datasets/InstaDeepAI/SPICE2-curated).
61
  For more information about dataset configuration
62
- please refer to our [documentation](https://instadeep.github.io/mlip/api_reference/data/dataset_configs.html#mlip.data.configs.GraphDatasetBuilderConfig)
63
 
64
  ## License summary
65
 
 
6
 
7
  URL: https://arxiv.org/abs/2206.07697
8
  ## How to Use
9
+ For complete usage instructions and more information, please refer to our [documentation](https://instadeepai.github.io/mlip)
10
  ## Model architecture
11
  | Parameter | Value | Description |
12
  |----------------------------------|----------------------|--------------------------------------------------------------------------------------|
 
27
 
28
 
29
  For more information about MACE hyperparameters,
30
+ please refer to our [documentation](https://instadeepai.github.io/mlip/api_reference/models/mace.html#mlip.models.visnet.config.MaceConfig)
31
  ## Training
32
  Training is performed over 220 epochs, with an exponential moving average (EMA) decay rate of 0.99.
33
  The model employs a MSE loss function with scheduled weights for the energy and force components.
 
47
 
48
 
49
  For more information about the optimizer,
50
+ please refer to our [documentation](https://instadeepai.github.io/mlip/api_reference/training/optimizer.html#mlip.training.optimizer_config.OptimizerConfig)
51
  ## Dataset
52
  | Parameter | Value | Description |
53
  |-----------------------------|-------|--------------------------------------------|
 
59
 
60
  This model was trained on the [SPICE2_curated dataset](https://huggingface.co/datasets/InstaDeepAI/SPICE2-curated).
61
  For more information about dataset configuration
62
+ please refer to our [documentation](https://instadeepai.github.io/mlip/api_reference/data/dataset_configs.html#mlip.data.configs.GraphDatasetBuilderConfig)
63
 
64
  ## License summary
65