File size: 2,938 Bytes
a8916ec
e7809ba
 
 
 
 
 
 
 
 
a8916ec
e7809ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---

license: apache-2.0
language:
- en
pipeline_tag: image-text-to-text
tags:
- multimodal
library_name: transformers
base_model:
- Qwen/Qwen2-VL-2B
---


# G2VLM-2B-MoT
## Geometry Grounded Vision Language Model with Unified 3D Reconstruction and Spatial Reasoning

<p align="left">
  <img src="https://huggingface.co/InternRobotics/G2VLM-2B-MoT/resolve/main/assets/icon.png" alt="G2VLM" width="200"/>
</p>


<p align="left">
  <a href="https://gordonhu608.github.io/g2vlm.github.io/">
    <img

      src="https://img.shields.io/badge/G2VLM-Website-0A66C2?logo=safari&logoColor=white" style="display: inline-block; vertical-align: middle;"

      alt="G2VLM Website"

    />

  </a>

  <a href="https://arxiv.org/abs/2511.21688">

    <img

      src="https://img.shields.io/badge/G2VLM-Paper-red?logo=arxiv&logoColor=red" style="display: inline-block; vertical-align: middle;"

      alt="G2VLM Paper on arXiv"

    />

  </a>

  <a href="https://github.com/InternRobotics/G2VLM" target="_blank" style="margin: 2px;">

      <img 

        alt="Github" src="https://img.shields.io/badge/G2VLM-Codebase-536af5?color=536af5&logo=github" style="display: inline-block; vertical-align: middle;"

        alt="G2VLM Codebase"

      />

  </a>

</p>



> We present <b>G<sup>2</sup>VLM</b>, a geometry grounded vision-language model proficient in both spatial 3D reconstruction and spatial understanding tasks. For spatial reasoning questions, G<sup>2</sup>VLM can natively predict 3D geometry and employ interleaved reasoning for an answer.


This repository hosts the model weights for <b>G<sup>2</sup>VLM</b>. For installation, usage instructions, and further documentation, please visit our [GitHub repository](https://github.com/InternRobotics/G2VLM).


<p align="left"><img src="https://huggingface.co/InternRobotics/G2VLM-2B-MoT/resolve/main/assets/teaser.png" width="100%"></p>



## 🧠 Method
<i>G<sup>2</sup>VLM is a unified model that integrates both a geometric perception expert for 3D reconstruction and a semantic perception expert for multimodal understanding and spatial reasoning tasks. All tokens can do shared multi-modal self attention in each transformer block.

<p align="left"><img src="https://huggingface.co/InternRobotics/G2VLM-2B-MoT/resolve/main/assets/method.png" width="100%"></p>


## License
G2VLM is licensed under the Apache 2.0 license.

## ✍️ Citation
```bibtex

@article{hu2025g2vlmgeometrygroundedvision,

      title={G$^2$VLM: Geometry Grounded Vision Language Model with Unified 3D Reconstruction and Spatial Reasoning}, 

      author={Wenbo Hu and Jingli Lin and Yilin Long and Yunlong Ran and Lihan Jiang and Yifan Wang and Chenming Zhu and Runsen Xu and Tai Wang and Jiangmiao Pang},

      year={2025},

      eprint={2511.21688},

      archivePrefix={arXiv},

      primaryClass={cs.CV},

      url={https://arxiv.org/abs/2511.21688}, 

}

```