--- library_name: transformers tags: - text-classification - modernbert - generated-data base_model: xlm-roberta-base metrics: - name: loss type: loss value: 0.3350488543510437 - name: accuracy type: accuracy value: 0.9124166666666667 - name: f1 type: f1 value: 0.9120147312529937 - name: precision type: precision value: 0.9128995023586967 - name: recall type: recall value: 0.9124720693071042 - name: runtime type: runtime value: 6.9012 - name: samples_per_second type: samples_per_second value: 1738.831 - name: steps_per_second type: steps_per_second value: 54.338 - name: epoch type: epoch value: 3.0 --- # Gender Classifier (Fine-tuned xlm-roberta-base) This model was fine-tuned to classify text into: male, female, neutral ## Performance Metrics | Metric | Value | | :--- | :--- | | **loss** | 0.3350 | | **accuracy** | 0.9124 | | **f1** | 0.9120 | | **precision** | 0.9129 | | **recall** | 0.9125 | | **runtime** | 6.9012 | | **samples_per_second** | 1738.8310 | | **steps_per_second** | 54.3380 | | **epoch** | 3.0000 | ## Hyperparameters - **Batch Size**: 32 - **Learning Rate**: 5e-05 - **Epochs**: 3 - **Weight Decay**: 0.01 - **Mixed Precision (FP16)**: True ## Quick Usage ```python from transformers import pipeline # Load the model directly from this folder or HF Hub classifier = pipeline('text-classification', model='.') print(classifier('She is a great engineer.')) ```