--- library_name: transformers tags: - text-classification - modernbert - generated-data base_model: xlm-roberta-large metrics: - name: loss type: loss value: 0.4027690887451172 - name: accuracy type: accuracy value: 0.883 - name: f1 type: f1 value: 0.8826794072627964 - name: precision type: precision value: 0.8852544531362957 - name: recall type: recall value: 0.8831381197007152 - name: runtime type: runtime value: 43.8849 - name: samples_per_second type: samples_per_second value: 273.443 - name: steps_per_second type: steps_per_second value: 34.18 - name: epoch type: epoch value: 3.0 --- # Gender Classifier (Fine-tuned xlm-roberta-large) This model was fine-tuned to classify text into: male, female, neutral ## Performance Metrics | Metric | Value | | :--- | :--- | | **loss** | 0.4028 | | **accuracy** | 0.8830 | | **f1** | 0.8827 | | **precision** | 0.8853 | | **recall** | 0.8831 | | **runtime** | 43.8849 | | **samples_per_second** | 273.4430 | | **steps_per_second** | 34.1800 | | **epoch** | 3.0000 | ## Hyperparameters - **Batch Size**: 8 - **Learning Rate**: 5e-05 - **Epochs**: 3 - **Weight Decay**: 0.01 - **Mixed Precision (FP16)**: True ## Quick Usage ```python from transformers import pipeline # Load the model directly from this folder or HF Hub classifier = pipeline('text-classification', model='.') print(classifier('She is a great engineer.')) ```