--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - seizure-detection - generated_from_trainer model-index: - name: seizure_vit_jlb_231108_iir_adjusted results: [] --- # seizure_vit_jlb_231108_iir_adjusted This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the JLB-JLB/seizure_eeg_iirFilter_greyscale_224x224_6secWindow_adjusted dataset. It achieves the following results on the evaluation set: - Loss: 0.4198 - Roc Auc: 0.7773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Roc Auc | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.3803 | 0.34 | 1000 | 0.4734 | 0.7746 | | 0.3456 | 0.68 | 2000 | 0.4863 | 0.7782 | | 0.2831 | 1.02 | 3000 | 0.4817 | 0.7897 | | 0.2781 | 1.36 | 4000 | 0.5418 | 0.7656 | | 0.2355 | 1.7 | 5000 | 0.5398 | 0.7786 | | 0.1978 | 2.04 | 6000 | 0.6121 | 0.7649 | | 0.149 | 2.38 | 7000 | 0.6402 | 0.7706 | | 0.1766 | 2.72 | 8000 | 0.6768 | 0.7610 | | 0.1496 | 3.06 | 9000 | 0.6239 | 0.7733 | | 0.155 | 3.4 | 10000 | 0.7333 | 0.7602 | | 0.1238 | 3.75 | 11000 | 0.6513 | 0.7726 | | 0.1054 | 4.09 | 12000 | 0.7551 | 0.7667 | | 0.1076 | 4.43 | 13000 | 0.8132 | 0.7627 | | 0.1321 | 4.77 | 14000 | 0.8152 | 0.7587 | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/640b79908a08d0ca79456a04/K8ORF3q_Eyp_q2VjHSg_F.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/640b79908a08d0ca79456a04/Hi6zx6Abb_Y4AbpEveBHX.png) ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1