Upload metadata.json with huggingface_hub
Browse files- metadata.json +36 -13
metadata.json
CHANGED
|
@@ -1,27 +1,50 @@
|
|
| 1 |
{
|
| 2 |
-
"model_id": "romeo-v5",
|
| 3 |
"owner": "JonusNattapong",
|
| 4 |
"license": "mit",
|
| 5 |
-
"tags": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
"artifacts": [
|
| 7 |
"trading_model_romeo_daily.pkl",
|
| 8 |
-
"romeo_keras_daily.keras"
|
| 9 |
-
"MODEL_CARD.md"
|
| 10 |
],
|
| 11 |
"metrics": {
|
| 12 |
-
"
|
| 13 |
-
"initial_capital": 100,
|
| 14 |
"final_capital": 484.8199412897085,
|
| 15 |
"cagr": 0.044435345346789834,
|
| 16 |
"annual_volatility": 0.4118163868756299,
|
| 17 |
"sharpe": 0.31192432046397695,
|
| 18 |
"max_drawdown": -0.47656310794093215,
|
| 19 |
"total_trades": 3610,
|
| 20 |
-
"
|
|
|
|
|
|
|
| 21 |
},
|
| 22 |
-
"
|
| 23 |
-
"usage":
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
{
|
| 2 |
+
"model_id": "JonusNattapong/romeo-v5",
|
| 3 |
"owner": "JonusNattapong",
|
| 4 |
"license": "mit",
|
| 5 |
+
"tags": [
|
| 6 |
+
"trading",
|
| 7 |
+
"finance",
|
| 8 |
+
"gold",
|
| 9 |
+
"xauusd",
|
| 10 |
+
"forex",
|
| 11 |
+
"algorithmic-trading",
|
| 12 |
+
"smart-money-concepts",
|
| 13 |
+
"smc",
|
| 14 |
+
"xgboost",
|
| 15 |
+
"lightgbm",
|
| 16 |
+
"machine-learning",
|
| 17 |
+
"backtesting",
|
| 18 |
+
"technical-analysis",
|
| 19 |
+
"multi-timeframe",
|
| 20 |
+
"intraday-trading",
|
| 21 |
+
"high-frequency-trading",
|
| 22 |
+
"ensemble-model",
|
| 23 |
+
"keras",
|
| 24 |
+
"tensorflow"
|
| 25 |
+
],
|
| 26 |
"artifacts": [
|
| 27 |
"trading_model_romeo_daily.pkl",
|
| 28 |
+
"romeo_keras_daily.keras"
|
|
|
|
| 29 |
],
|
| 30 |
"metrics": {
|
| 31 |
+
"initial_capital": 100.0,
|
|
|
|
| 32 |
"final_capital": 484.8199412897085,
|
| 33 |
"cagr": 0.044435345346789834,
|
| 34 |
"annual_volatility": 0.4118163868756299,
|
| 35 |
"sharpe": 0.31192432046397695,
|
| 36 |
"max_drawdown": -0.47656310794093215,
|
| 37 |
"total_trades": 3610,
|
| 38 |
+
"win_trades": 1786,
|
| 39 |
+
"win_rate": 0.49473684210526314,
|
| 40 |
+
"avg_pnl": 0.10659832168689985
|
| 41 |
},
|
| 42 |
+
"feature_list": "artifact['features']",
|
| 43 |
+
"usage": "Load artifact with joblib.load(). Align data to artifact['features'], fill missing with 0. Predict with ensemble weights. Use v5/backtest_v5.py for backtesting.",
|
| 44 |
+
"training_data": "Yahoo Finance GC=F historical data with SMC and technical features",
|
| 45 |
+
"evaluation_data": "Unseen fresh daily data",
|
| 46 |
+
"frameworks": ["scikit-learn", "xgboost", "lightgbm", "tensorflow"],
|
| 47 |
+
"python_version": "3.8+",
|
| 48 |
+
"dependencies": ["joblib", "pandas", "numpy", "scipy"],
|
| 49 |
+
"caveats": "Simplified position sizing; historical backtests only; not financial advice"
|
| 50 |
+
}
|