{ "model_id": "JonusNattapong/romeo-v5", "owner": "JonusNattapong", "license": "mit", "tags": [ "trading", "finance", "gold", "xauusd", "forex", "algorithmic-trading", "smart-money-concepts", "smc", "xgboost", "lightgbm", "machine-learning", "backtesting", "technical-analysis", "multi-timeframe", "intraday-trading", "high-frequency-trading", "ensemble-model", "keras", "tensorflow" ], "artifacts": [ "trading_model_romeo_daily.pkl", "romeo_keras_daily.keras" ], "metrics": { "initial_capital": 100.0, "final_capital": 484.8199412897085, "cagr": 0.044435345346789834, "annual_volatility": 0.4118163868756299, "sharpe": 0.31192432046397695, "max_drawdown": -0.47656310794093215, "total_trades": 3610, "win_trades": 1786, "win_rate": 0.49473684210526314, "avg_pnl": 0.10659832168689985 }, "feature_list": "artifact['features']", "usage": "Load artifact with joblib.load(). Align data to artifact['features'], fill missing with 0. Predict with ensemble weights. Use v5/backtest_v5.py for backtesting.", "training_data": "Yahoo Finance GC=F historical data with SMC and technical features", "evaluation_data": "Unseen fresh daily data", "frameworks": ["scikit-learn", "xgboost", "lightgbm", "tensorflow"], "python_version": "3.8+", "dependencies": ["joblib", "pandas", "numpy", "scipy"], "caveats": "Simplified position sizing; historical backtests only; not financial advice" }