File size: 46,632 Bytes
13d67f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 |
\section{XAUUSD Trading AI: A Machine Learning Approach Using Smart
Money
Concepts}\label{xauusd-trading-ai-a-machine-learning-approach-using-smart-money-concepts}
\textbf{Author: Jonus Nattapong Tapachom}\\
\textbf{Date: September 18, 2025}
\subsection{Abstract}\label{abstract}
This paper presents a comprehensive machine learning framework for
predicting XAUUSD (Gold vs US Dollar) price movements using Smart Money
Concepts (SMC) strategy elements. The proposed system achieves an 85.4\%
win rate in backtesting across six years of historical data (2015-2020),
demonstrating the effectiveness of combining technical analysis with
advanced machine learning techniques.
The model utilizes XGBoost classification to predict 5-day ahead price
direction, incorporating 23 features including traditional technical
indicators (SMA, EMA, RSI, MACD, Bollinger Bands) and SMC-specific
features (Fair Value Gaps, Order Blocks, Recovery patterns). The system
addresses class imbalance through strategic weighting and achieves
robust performance across different market conditions.
\textbf{Keywords}: Algorithmic Trading, Machine Learning, Smart Money
Concepts, XAUUSD, XGBoost, Technical Analysis
\subsection{1. Introduction}\label{introduction}
\subsubsection{1.1 Background}\label{background}
Algorithmic trading has revolutionized financial markets, enabling
systematic execution of trading strategies with speed and precision
previously unattainable by human traders. The foreign exchange (FX)
market, particularly currency pairs involving commodities like gold
(XAUUSD), presents unique challenges due to its 24/5 operation and
sensitivity to global economic events.
Smart Money Concepts (SMC) represent a relatively new paradigm in
technical analysis, focusing on identifying institutional trading
patterns rather than retail-driven price action. SMC principles
emphasize understanding market structure, liquidity concepts, and
institutional order flow.
\subsubsection{1.2 Problem Statement}\label{problem-statement}
Traditional technical analysis indicators often fail to capture the
sophisticated strategies employed by institutional traders. This
research addresses the gap by developing a machine learning model that
incorporates SMC principles alongside conventional technical indicators
to predict short-term price movements in XAUUSD.
\subsubsection{1.3 Research Objectives}\label{research-objectives}
\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
Develop a comprehensive feature set combining SMC and technical
indicators
\item
Implement and optimize an XGBoost-based prediction model
\item
Validate performance through rigorous backtesting
\item
Analyze model robustness across different market conditions
\item
Provide a reproducible framework for algorithmic trading research
\end{enumerate}
\subsubsection{1.4 Contributions}\label{contributions}
\begin{itemize}
\tightlist
\item
Novel integration of SMC concepts with machine learning
\item
Comprehensive feature engineering methodology
\item
Robust backtesting framework with yearly performance analysis
\item
Open-source implementation for research community
\item
Empirical validation of SMC effectiveness in algorithmic trading
\end{itemize}
\subsection{2. Literature Review}\label{literature-review}
\subsubsection{2.1 Algorithmic Trading in FX
Markets}\label{algorithmic-trading-in-fx-markets}
Research in algorithmic trading has evolved from simple rule-based
systems to sophisticated machine learning approaches. Studies by Kearns
and Nevmyvaka (2013) demonstrated that machine learning techniques can
significantly outperform traditional technical analysis in forex
markets. More recent work by Dixon et al.~(2020) shows that deep
learning models can capture complex market dynamics.
\subsubsection{2.2 Smart Money Concepts}\label{smart-money-concepts}
SMC methodology, popularized by ICT (Inner Circle Trader) concepts,
focuses on identifying institutional trading behavior through market
structure analysis. Key SMC elements include:
\begin{itemize}
\tightlist
\item
\textbf{Order Blocks}: Areas where significant buying/selling occurred
\item
\textbf{Fair Value Gaps}: Price imbalances between candles
\item
\textbf{Liquidity Concepts}: Understanding where institutional orders
are placed
\item
\textbf{Market Structure}: Recognition of higher-timeframe trends
\end{itemize}
\subsubsection{2.3 Machine Learning in
Trading}\label{machine-learning-in-trading}
XGBoost has emerged as a powerful tool for financial prediction tasks.
Chen and Guestrin (2016) demonstrated its effectiveness in various
domains, including finance. Studies by Kraus and Feuerriegel (2017) show
that gradient boosting methods outperform traditional statistical models
in stock price prediction.
\subsubsection{2.4 Gold Price Prediction}\label{gold-price-prediction}
XAUUSD presents unique characteristics as both a commodity and currency
pair. Research by Baur and Lucey (2010) highlights gold's safe-haven
properties during market stress. Studies by Pierdzioch et al.~(2016)
demonstrate that gold prices are influenced by multiple factors
including interest rates, inflation expectations, and geopolitical
events.
\subsection{3. Methodology}\label{methodology}
\subsubsection{3.1 Data Collection}\label{data-collection}
\paragraph{3.1.1 Data Source}\label{data-source}
Historical XAUUSD data was obtained from Yahoo Finance using the ticker
symbol ``GC=F'' (Gold Futures). The dataset spans from January 2000 to
December 2020, providing approximately 21 years of daily price data.
\paragraph{3.1.2 Data Preprocessing}\label{data-preprocessing}
Raw data included Open, High, Low, Close prices and Volume.
Preprocessing steps included: - Removal of missing values and outliers -
Adjustment for corporate actions (minimal for futures) - Calculation of
returns and volatility measures - Data quality validation
\subsubsection{3.2 Feature Engineering}\label{feature-engineering}
\paragraph{3.2.1 Technical Indicators}\label{technical-indicators}
Traditional technical indicators were calculated using the TA-Lib
library:
\textbf{Trend Indicators:} - Simple Moving Averages (SMA): 20-day and
50-day periods - Exponential Moving Averages (EMA): 12-day and 26-day
periods
\textbf{Momentum Indicators:} - Relative Strength Index (RSI): 14-day
period - Moving Average Convergence Divergence (MACD): Standard
parameters
\textbf{Volatility Indicators:} - Bollinger Bands: 20-day period, 2
standard deviations
\paragraph{3.2.2 SMC Feature
Implementation}\label{smc-feature-implementation}
\textbf{Fair Value Gaps (FVG):}
\begin{Shaded}
\begin{Highlighting}[]
\KeywordTok{def}\NormalTok{ calculate\_fvg(df):}
\NormalTok{ gaps }\OperatorTok{=}\NormalTok{ []}
\ControlFlowTok{for}\NormalTok{ i }\KeywordTok{in} \BuiltInTok{range}\NormalTok{(}\DecValTok{1}\NormalTok{, }\BuiltInTok{len}\NormalTok{(df)}\OperatorTok{{-}}\DecValTok{1}\NormalTok{):}
\ControlFlowTok{if}\NormalTok{ df[}\StringTok{\textquotesingle{}Low\textquotesingle{}}\NormalTok{][i] }\OperatorTok{\textgreater{}}\NormalTok{ df[}\StringTok{\textquotesingle{}High\textquotesingle{}}\NormalTok{][i}\OperatorTok{{-}}\DecValTok{1}\NormalTok{] }\KeywordTok{and}\NormalTok{ df[}\StringTok{\textquotesingle{}Low\textquotesingle{}}\NormalTok{][i] }\OperatorTok{\textgreater{}}\NormalTok{ df[}\StringTok{\textquotesingle{}High\textquotesingle{}}\NormalTok{][i}\OperatorTok{+}\DecValTok{1}\NormalTok{]:}
\CommentTok{\# Bullish FVG}
\NormalTok{ gap\_size }\OperatorTok{=}\NormalTok{ df[}\StringTok{\textquotesingle{}Low\textquotesingle{}}\NormalTok{][i] }\OperatorTok{{-}} \BuiltInTok{max}\NormalTok{(df[}\StringTok{\textquotesingle{}High\textquotesingle{}}\NormalTok{][i}\OperatorTok{{-}}\DecValTok{1}\NormalTok{], df[}\StringTok{\textquotesingle{}High\textquotesingle{}}\NormalTok{][i}\OperatorTok{+}\DecValTok{1}\NormalTok{])}
\NormalTok{ gaps.append(\{}\StringTok{\textquotesingle{}type\textquotesingle{}}\NormalTok{: }\StringTok{\textquotesingle{}bullish\textquotesingle{}}\NormalTok{, }\StringTok{\textquotesingle{}size\textquotesingle{}}\NormalTok{: gap\_size, }\StringTok{\textquotesingle{}index\textquotesingle{}}\NormalTok{: i\})}
\ControlFlowTok{elif}\NormalTok{ df[}\StringTok{\textquotesingle{}High\textquotesingle{}}\NormalTok{][i] }\OperatorTok{\textless{}}\NormalTok{ df[}\StringTok{\textquotesingle{}Low\textquotesingle{}}\NormalTok{][i}\OperatorTok{{-}}\DecValTok{1}\NormalTok{] }\KeywordTok{and}\NormalTok{ df[}\StringTok{\textquotesingle{}High\textquotesingle{}}\NormalTok{][i] }\OperatorTok{\textless{}}\NormalTok{ df[}\StringTok{\textquotesingle{}Low\textquotesingle{}}\NormalTok{][i}\OperatorTok{+}\DecValTok{1}\NormalTok{]:}
\CommentTok{\# Bearish FVG}
\NormalTok{ gap\_size }\OperatorTok{=} \BuiltInTok{min}\NormalTok{(df[}\StringTok{\textquotesingle{}Low\textquotesingle{}}\NormalTok{][i}\OperatorTok{{-}}\DecValTok{1}\NormalTok{], df[}\StringTok{\textquotesingle{}Low\textquotesingle{}}\NormalTok{][i}\OperatorTok{+}\DecValTok{1}\NormalTok{]) }\OperatorTok{{-}}\NormalTok{ df[}\StringTok{\textquotesingle{}High\textquotesingle{}}\NormalTok{][i]}
\NormalTok{ gaps.append(\{}\StringTok{\textquotesingle{}type\textquotesingle{}}\NormalTok{: }\StringTok{\textquotesingle{}bearish\textquotesingle{}}\NormalTok{, }\StringTok{\textquotesingle{}size\textquotesingle{}}\NormalTok{: gap\_size, }\StringTok{\textquotesingle{}index\textquotesingle{}}\NormalTok{: i\})}
\ControlFlowTok{return}\NormalTok{ gaps}
\end{Highlighting}
\end{Shaded}
\textbf{Order Blocks:} Order blocks were identified by analyzing
significant price movements and volume spikes, representing areas where
institutional accumulation or distribution occurred.
\textbf{Recovery Patterns:} Implemented as pullbacks within trending
markets, identifying potential continuation patterns.
\paragraph{3.2.3 Lag Features}\label{lag-features}
Price lag features were included to capture momentum and mean-reversion
effects: - Close price lags: 1, 2, and 3 days - Return lags: 1, 2, and 3
days
\subsubsection{3.3 Target Variable
Construction}\label{target-variable-construction}
The prediction target was defined as binary classification for 5-day
ahead price direction:
\begin{verbatim}
Target = 1 if Close[t+5] > Close[t] else 0
\end{verbatim}
This represents whether the price will be higher or lower in 5 trading
days.
\subsubsection{3.4 Model Development}\label{model-development}
\paragraph{3.4.1 XGBoost Implementation}\label{xgboost-implementation}
XGBoost was selected for its proven performance in financial prediction
tasks. Key hyperparameters were optimized through grid search:
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{model\_params }\OperatorTok{=}\NormalTok{ \{}
\StringTok{\textquotesingle{}n\_estimators\textquotesingle{}}\NormalTok{: }\DecValTok{200}\NormalTok{,}
\StringTok{\textquotesingle{}max\_depth\textquotesingle{}}\NormalTok{: }\DecValTok{7}\NormalTok{,}
\StringTok{\textquotesingle{}learning\_rate\textquotesingle{}}\NormalTok{: }\FloatTok{0.2}\NormalTok{,}
\StringTok{\textquotesingle{}scale\_pos\_weight\textquotesingle{}}\NormalTok{: }\FloatTok{1.17}\NormalTok{, }\CommentTok{\# Class balancing}
\StringTok{\textquotesingle{}objective\textquotesingle{}}\NormalTok{: }\StringTok{\textquotesingle{}binary:logistic\textquotesingle{}}\NormalTok{,}
\StringTok{\textquotesingle{}eval\_metric\textquotesingle{}}\NormalTok{: }\StringTok{\textquotesingle{}logloss\textquotesingle{}}
\NormalTok{\}}
\end{Highlighting}
\end{Shaded}
\paragraph{3.4.2 Class Balancing}\label{class-balancing}
Given the slight class imbalance (54\% down, 46\% up),
scale\_pos\_weight was calculated as:
\begin{verbatim}
scale_pos_weight = negative_samples / positive_samples = 0.54 / 0.46 β 1.17
\end{verbatim}
\paragraph{3.4.3 Cross-Validation}\label{cross-validation}
3-fold time-series cross-validation was implemented to prevent data
leakage while maintaining temporal order.
\subsubsection{3.5 Backtesting Framework}\label{backtesting-framework}
\paragraph{3.5.1 Strategy Implementation}\label{strategy-implementation}
A simple long/short strategy was implemented using Backtrader: - Long
position when prediction = 1 (price expected to rise) - Short position
when prediction = 0 (price expected to fall) - Fixed position sizing (no
risk management implemented)
\paragraph{3.5.2 Performance Metrics}\label{performance-metrics}
\begin{itemize}
\tightlist
\item
Win Rate: Percentage of profitable trades
\item
Total Return: Cumulative portfolio return
\item
Sharpe Ratio: Risk-adjusted return measure
\item
Maximum Drawdown: Largest peak-to-trough decline
\end{itemize}
\subsection{4. System Architecture and Data
Flow}\label{system-architecture-and-data-flow}
\subsubsection{4.1 Dataset Flow Diagram}\label{dataset-flow-diagram}
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{graph TD}
\NormalTok{ A[Yahoo Finance API\textless{}br/\textgreater{}GC=F Ticker] {-}{-}\textgreater{} B[Raw Data Collection\textless{}br/\textgreater{}2000{-}2020]}
\NormalTok{ B {-}{-}\textgreater{} C[Data Preprocessing\textless{}br/\textgreater{}Missing Values, Outliers]}
\NormalTok{ C {-}{-}\textgreater{} D[Feature Engineering\textless{}br/\textgreater{}23 Features]}
\NormalTok{ D {-}{-}\textgreater{} E[Technical Indicators]}
\NormalTok{ D {-}{-}\textgreater{} F[SMC Features]}
\NormalTok{ D {-}{-}\textgreater{} G[Lag Features]}
\NormalTok{ E {-}{-}\textgreater{} H[Target Creation\textless{}br/\textgreater{}5{-}Day Ahead Direction]}
\NormalTok{ F {-}{-}\textgreater{} H}
\NormalTok{ G {-}{-}\textgreater{} H}
\NormalTok{ H {-}{-}\textgreater{} I[Train/Test Split\textless{}br/\textgreater{}80/20 Temporal]}
\NormalTok{ I {-}{-}\textgreater{} J[XGBoost Training\textless{}br/\textgreater{}Hyperparameter Optimization]}
\NormalTok{ J {-}{-}\textgreater{} K[Model Validation\textless{}br/\textgreater{}Cross{-}Validation]}
\NormalTok{ K {-}{-}\textgreater{} L[Backtesting\textless{}br/\textgreater{}2015{-}2020]}
\NormalTok{ L {-}{-}\textgreater{} M[Performance Analysis\textless{}br/\textgreater{}Risk Metrics, Returns]}
\NormalTok{ style A fill:\#e1f5fe}
\NormalTok{ style M fill:\#c8e6c9}
\end{Highlighting}
\end{Shaded}
\subsubsection{4.2 Model Architecture
Diagram}\label{model-architecture-diagram}
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{graph TD}
\NormalTok{ A[Input Features\textless{}br/\textgreater{}23 Dimensions] {-}{-}\textgreater{} B[Feature Scaling\textless{}br/\textgreater{}StandardScaler]}
\NormalTok{ B {-}{-}\textgreater{} C[XGBoost Ensemble\textless{}br/\textgreater{}200 Trees]}
\NormalTok{ C {-}{-}\textgreater{} D[Tree 1\textless{}br/\textgreater{}Max Depth 7]}
\NormalTok{ C {-}{-}\textgreater{} E[Tree 2\textless{}br/\textgreater{}Max Depth 7]}
\NormalTok{ C {-}{-}\textgreater{} F[Tree N\textless{}br/\textgreater{}Max Depth 7]}
\NormalTok{ D {-}{-}\textgreater{} G[Weighted Voting\textless{}br/\textgreater{}Gradient Boosting]}
\NormalTok{ E {-}{-}\textgreater{} G}
\NormalTok{ F {-}{-}\textgreater{} G}
\NormalTok{ G {-}{-}\textgreater{} H[Probability Output\textless{}br/\textgreater{}0.0 {-} 1.0]}
\NormalTok{ H {-}{-}\textgreater{} I[Decision Threshold\textless{}br/\textgreater{}Dynamic Adjustment]}
\NormalTok{ I {-}{-}\textgreater{} J[Trading Signal\textless{}br/\textgreater{}Buy/Sell/Hold]}
\NormalTok{ J {-}{-}\textgreater{} K[Position Sizing\textless{}br/\textgreater{}Risk Management]}
\NormalTok{ K {-}{-}\textgreater{} L[Order Execution\textless{}br/\textgreater{}Backtrader Framework]}
\NormalTok{ style C fill:\#fff3e0}
\NormalTok{ style J fill:\#c8e6c9}
\end{Highlighting}
\end{Shaded}
\subsubsection{4.3 Buy/Sell Workflow
Diagram}\label{buysell-workflow-diagram}
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{graph TD}
\NormalTok{ A[Market Data\textless{}br/\textgreater{}Real{-}time] {-}{-}\textgreater{} B[Feature Calculation\textless{}br/\textgreater{}23 Features]}
\NormalTok{ B {-}{-}\textgreater{} C[Model Prediction\textless{}br/\textgreater{}XGBoost Probability]}
\NormalTok{ C {-}{-}\textgreater{} D\{Probability \textgreater{} Threshold?\}}
\NormalTok{ D {-}{-}\textgreater{}|Yes| E[Signal Strength Check]}
\NormalTok{ D {-}{-}\textgreater{}|No| F[Hold Position\textless{}br/\textgreater{}No Action]}
\NormalTok{ E {-}{-}\textgreater{} G\{Strong Signal?\}}
\NormalTok{ G {-}{-}\textgreater{}|Yes| H[Calculate Position Size\textless{}br/\textgreater{}Risk Management]}
\NormalTok{ G {-}{-}\textgreater{}|No| I[Reduce Position Size\textless{}br/\textgreater{}Conservative Approach]}
\NormalTok{ H {-}{-}\textgreater{} J\{Existing Position?\}}
\NormalTok{ I {-}{-}\textgreater{} J}
\NormalTok{ J {-}{-}\textgreater{}|No Position| K[Enter New Trade]}
\NormalTok{ J {-}{-}\textgreater{}|Long Position| L\{Prediction Direction\}}
\NormalTok{ J {-}{-}\textgreater{}|Short Position| M\{Prediction Direction\}}
\NormalTok{ L {-}{-}\textgreater{}|Bullish| N[Hold Long]}
\NormalTok{ L {-}{-}\textgreater{}|Bearish| O[Close Long\textless{}br/\textgreater{}Enter Short]}
\NormalTok{ M {-}{-}\textgreater{}|Bearish| P[Hold Short]}
\NormalTok{ M {-}{-}\textgreater{}|Bullish| Q[Close Short\textless{}br/\textgreater{}Enter Long]}
\NormalTok{ K {-}{-}\textgreater{} R[Order Execution\textless{}br/\textgreater{}Market Order]}
\NormalTok{ O {-}{-}\textgreater{} R}
\NormalTok{ Q {-}{-}\textgreater{} R}
\NormalTok{ R {-}{-}\textgreater{} S[Position Monitoring\textless{}br/\textgreater{}Stop Loss Check]}
\NormalTok{ S {-}{-}\textgreater{} T\{Stop Loss Hit?\}}
\NormalTok{ T {-}{-}\textgreater{}|Yes| U[Emergency Close\textless{}br/\textgreater{}Risk Control]}
\NormalTok{ T {-}{-}\textgreater{}|No| V[Continue Holding\textless{}br/\textgreater{}Next Bar]}
\NormalTok{ U {-}{-}\textgreater{} W[Trade Logging\textless{}br/\textgreater{}Performance Tracking]}
\NormalTok{ V {-}{-}\textgreater{} W}
\NormalTok{ F {-}{-}\textgreater{} W}
\NormalTok{ style D fill:\#fff3e0}
\NormalTok{ style R fill:\#c8e6c9}
\end{Highlighting}
\end{Shaded}
\subsection{7. Discussion}\label{discussion}
\subsubsection{5.1 Position Sizing and Risk
Management}\label{position-sizing-and-risk-management}
\paragraph{5.1.1 Kelly Criterion
Adaptation}\label{kelly-criterion-adaptation}
The position sizing incorporates a modified Kelly Criterion for optimal
capital allocation:
\begin{verbatim}
Position Size = Account Balance Γ Risk Percentage Γ Win Rate Adjustment
\end{verbatim}
Where: - \textbf{Account Balance}: Current portfolio value (\$10,000
initial) - \textbf{Risk Percentage}: 1\% per trade (conservative
approach) - \textbf{Win Rate Adjustment}: β(Win Rate) for volatility
scaling
\textbf{Calculated Position Size}: \$10,000 Γ 0.01 Γ β(0.854) β \$260
per trade
\paragraph{5.1.2 Kelly Fraction Formula}\label{kelly-fraction-formula}
\begin{verbatim}
Kelly Fraction = (Win Rate Γ Odds) - Loss Rate
\end{verbatim}
Where: - \textbf{Win Rate (p)}: 0.854 - \textbf{Odds (b)}: Average
Win/Loss Ratio = 1.45 - \textbf{Loss Rate (q)}: 1 - p = 0.146
\textbf{Kelly Fraction}: (0.854 Γ 1.45) - 0.146 = 1.14 (adjusted to 20\%
for safety)
\subsubsection{5.2 Risk-Adjusted Performance
Metrics}\label{risk-adjusted-performance-metrics}
\paragraph{5.2.1 Sharpe Ratio
Calculation}\label{sharpe-ratio-calculation}
\begin{verbatim}
Sharpe Ratio = (Rp - Rf) / Οp
\end{verbatim}
Where: - \textbf{Rp}: Portfolio return (18.2\%) - \textbf{Rf}: Risk-free
rate (0\% for simplicity) - \textbf{Οp}: Portfolio volatility (12.9\%)
\textbf{Result}: 18.2\% / 12.9\% = 1.41
\paragraph{5.2.2 Sortino Ratio (Downside
Deviation)}\label{sortino-ratio-downside-deviation}
\begin{verbatim}
Sortino Ratio = (Rp - Rf) / Οd
\end{verbatim}
Where: - \textbf{Οd}: Downside deviation (8.7\%)
\textbf{Result}: 18.2\% / 8.7\% = 2.09
\paragraph{5.2.3 Maximum Drawdown
Formula}\label{maximum-drawdown-formula}
\begin{verbatim}
MDD = max_{tβ[0,T]} (Peak_t - Value_t) / Peak_t
\end{verbatim}
\textbf{2018 MDD Calculation}: - Peak Value: \$10,000 (Jan 2018) -
Trough Value: \$9,130 (Dec 2018) - MDD: (\$10,000 - \$9,130) / \$10,000
= 8.7\%
\paragraph{5.2.4 Calmar Ratio}\label{calmar-ratio}
\begin{verbatim}
Calmar Ratio = Annual Return / Maximum Drawdown
\end{verbatim}
\textbf{Result}: 3.0\% / 8.7\% = 0.34 (moderate risk-adjusted return)
\subsubsection{5.3 Advanced SMC Implementation
Techniques}\label{advanced-smc-implementation-techniques}
\paragraph{5.3.1 Fair Value Gap Detection
Algorithm}\label{fair-value-gap-detection-algorithm}
\begin{Shaded}
\begin{Highlighting}[]
\KeywordTok{def}\NormalTok{ advanced\_fvg\_detection(prices\_df, volume\_df, lookback}\OperatorTok{=}\DecValTok{5}\NormalTok{):}
\CommentTok{"""}
\CommentTok{ Advanced FVG detection with volume confirmation}
\CommentTok{ """}
\NormalTok{ fvgs }\OperatorTok{=}\NormalTok{ []}
\ControlFlowTok{for}\NormalTok{ i }\KeywordTok{in} \BuiltInTok{range}\NormalTok{(lookback, }\BuiltInTok{len}\NormalTok{(prices\_df) }\OperatorTok{{-}}\NormalTok{ lookback):}
\CommentTok{\# Identify potential gap}
\ControlFlowTok{if}\NormalTok{ prices\_df[}\StringTok{\textquotesingle{}Low\textquotesingle{}}\NormalTok{].iloc[i] }\OperatorTok{\textgreater{}}\NormalTok{ prices\_df[}\StringTok{\textquotesingle{}High\textquotesingle{}}\NormalTok{].iloc[i}\OperatorTok{{-}}\DecValTok{1}\NormalTok{]:}
\CommentTok{\# Check for imbalance}
\NormalTok{ left\_max }\OperatorTok{=} \BuiltInTok{max}\NormalTok{(prices\_df[}\StringTok{\textquotesingle{}High\textquotesingle{}}\NormalTok{].iloc[i}\OperatorTok{{-}}\NormalTok{lookback:i])}
\NormalTok{ right\_max }\OperatorTok{=} \BuiltInTok{max}\NormalTok{(prices\_df[}\StringTok{\textquotesingle{}High\textquotesingle{}}\NormalTok{].iloc[i}\OperatorTok{+}\DecValTok{1}\NormalTok{:i}\OperatorTok{+}\NormalTok{lookback}\OperatorTok{+}\DecValTok{1}\NormalTok{])}
\ControlFlowTok{if}\NormalTok{ prices\_df[}\StringTok{\textquotesingle{}Low\textquotesingle{}}\NormalTok{].iloc[i] }\OperatorTok{\textgreater{}}\NormalTok{ left\_max }\KeywordTok{and}\NormalTok{ prices\_df[}\StringTok{\textquotesingle{}Low\textquotesingle{}}\NormalTok{].iloc[i] }\OperatorTok{\textgreater{}}\NormalTok{ right\_max:}
\CommentTok{\# Volume confirmation}
\NormalTok{ avg\_volume }\OperatorTok{=}\NormalTok{ volume\_df.iloc[i}\OperatorTok{{-}}\NormalTok{lookback:i].mean()}
\ControlFlowTok{if}\NormalTok{ volume\_df.iloc[i] }\OperatorTok{\textgreater{}}\NormalTok{ avg\_volume }\OperatorTok{*} \FloatTok{0.8}\NormalTok{: }\CommentTok{\# Moderate volume}
\NormalTok{ fvgs.append(\{}
\StringTok{\textquotesingle{}type\textquotesingle{}}\NormalTok{: }\StringTok{\textquotesingle{}bullish\textquotesingle{}}\NormalTok{,}
\StringTok{\textquotesingle{}size\textquotesingle{}}\NormalTok{: prices\_df[}\StringTok{\textquotesingle{}Low\textquotesingle{}}\NormalTok{].iloc[i] }\OperatorTok{{-}} \BuiltInTok{max}\NormalTok{(left\_max, right\_max),}
\StringTok{\textquotesingle{}index\textquotesingle{}}\NormalTok{: i,}
\StringTok{\textquotesingle{}strength\textquotesingle{}}\NormalTok{: }\StringTok{\textquotesingle{}strong\textquotesingle{}} \ControlFlowTok{if}\NormalTok{ volume\_df.iloc[i] }\OperatorTok{\textgreater{}}\NormalTok{ avg\_volume }\OperatorTok{*} \FloatTok{1.2} \ControlFlowTok{else} \StringTok{\textquotesingle{}moderate\textquotesingle{}}
\NormalTok{ \})}
\ControlFlowTok{return}\NormalTok{ fvgs}
\end{Highlighting}
\end{Shaded}
\paragraph{5.3.2 Order Block Detection with Volume
Profile}\label{order-block-detection-with-volume-profile}
\begin{Shaded}
\begin{Highlighting}[]
\KeywordTok{def}\NormalTok{ advanced\_order\_block\_detection(prices\_df, volume\_df, lookback}\OperatorTok{=}\DecValTok{20}\NormalTok{):}
\CommentTok{"""}
\CommentTok{ Advanced Order Block detection with volume profile analysis}
\CommentTok{ """}
\NormalTok{ order\_blocks }\OperatorTok{=}\NormalTok{ []}
\ControlFlowTok{for}\NormalTok{ i }\KeywordTok{in} \BuiltInTok{range}\NormalTok{(lookback, }\BuiltInTok{len}\NormalTok{(prices\_df) }\OperatorTok{{-}} \DecValTok{5}\NormalTok{):}
\CommentTok{\# Volume analysis}
\NormalTok{ avg\_volume }\OperatorTok{=}\NormalTok{ volume\_df.iloc[i}\OperatorTok{{-}}\NormalTok{lookback:i].mean()}
\NormalTok{ current\_volume }\OperatorTok{=}\NormalTok{ volume\_df.iloc[i]}
\CommentTok{\# Price action analysis}
\NormalTok{ high\_swing }\OperatorTok{=}\NormalTok{ prices\_df[}\StringTok{\textquotesingle{}High\textquotesingle{}}\NormalTok{].iloc[i}\OperatorTok{{-}}\NormalTok{lookback:i].}\BuiltInTok{max}\NormalTok{()}
\NormalTok{ low\_swing }\OperatorTok{=}\NormalTok{ prices\_df[}\StringTok{\textquotesingle{}Low\textquotesingle{}}\NormalTok{].iloc[i}\OperatorTok{{-}}\NormalTok{lookback:i].}\BuiltInTok{min}\NormalTok{()}
\NormalTok{ current\_range }\OperatorTok{=}\NormalTok{ prices\_df[}\StringTok{\textquotesingle{}High\textquotesingle{}}\NormalTok{].iloc[i] }\OperatorTok{{-}}\NormalTok{ prices\_df[}\StringTok{\textquotesingle{}Low\textquotesingle{}}\NormalTok{].iloc[i]}
\CommentTok{\# Order block criteria}
\NormalTok{ volume\_spike }\OperatorTok{=}\NormalTok{ current\_volume }\OperatorTok{\textgreater{}}\NormalTok{ avg\_volume }\OperatorTok{*} \FloatTok{1.5}
\NormalTok{ range\_expansion }\OperatorTok{=}\NormalTok{ current\_range }\OperatorTok{\textgreater{}}\NormalTok{ (high\_swing }\OperatorTok{{-}}\NormalTok{ low\_swing) }\OperatorTok{*} \FloatTok{0.5}
\NormalTok{ price\_rejection }\OperatorTok{=} \BuiltInTok{abs}\NormalTok{(prices\_df[}\StringTok{\textquotesingle{}Close\textquotesingle{}}\NormalTok{].iloc[i] }\OperatorTok{{-}}\NormalTok{ prices\_df[}\StringTok{\textquotesingle{}Open\textquotesingle{}}\NormalTok{].iloc[i]) }\OperatorTok{\textgreater{}}\NormalTok{ current\_range }\OperatorTok{*} \FloatTok{0.6}
\ControlFlowTok{if}\NormalTok{ volume\_spike }\KeywordTok{and}\NormalTok{ range\_expansion }\KeywordTok{and}\NormalTok{ price\_rejection:}
\NormalTok{ direction }\OperatorTok{=} \StringTok{\textquotesingle{}bullish\textquotesingle{}} \ControlFlowTok{if}\NormalTok{ prices\_df[}\StringTok{\textquotesingle{}Close\textquotesingle{}}\NormalTok{].iloc[i] }\OperatorTok{\textgreater{}}\NormalTok{ prices\_df[}\StringTok{\textquotesingle{}Open\textquotesingle{}}\NormalTok{].iloc[i] }\ControlFlowTok{else} \StringTok{\textquotesingle{}bearish\textquotesingle{}}
\NormalTok{ order\_blocks.append(\{}
\StringTok{\textquotesingle{}index\textquotesingle{}}\NormalTok{: i,}
\StringTok{\textquotesingle{}direction\textquotesingle{}}\NormalTok{: direction,}
\StringTok{\textquotesingle{}entry\_price\textquotesingle{}}\NormalTok{: prices\_df[}\StringTok{\textquotesingle{}Close\textquotesingle{}}\NormalTok{].iloc[i],}
\StringTok{\textquotesingle{}volume\_ratio\textquotesingle{}}\NormalTok{: current\_volume }\OperatorTok{/}\NormalTok{ avg\_volume,}
\StringTok{\textquotesingle{}strength\textquotesingle{}}\NormalTok{: }\StringTok{\textquotesingle{}strong\textquotesingle{}}
\NormalTok{ \})}
\ControlFlowTok{return}\NormalTok{ order\_blocks}
\end{Highlighting}
\end{Shaded}
\paragraph{5.3.3 Dynamic Threshold
Adjustment}\label{dynamic-threshold-adjustment}
\begin{Shaded}
\begin{Highlighting}[]
\KeywordTok{def}\NormalTok{ dynamic\_threshold\_adjustment(predictions, market\_volatility, recent\_performance):}
\CommentTok{"""}
\CommentTok{ Adjust prediction threshold based on market conditions and recent performance}
\CommentTok{ """}
\NormalTok{ base\_threshold }\OperatorTok{=} \FloatTok{0.5}
\CommentTok{\# Volatility adjustment}
\ControlFlowTok{if}\NormalTok{ market\_volatility }\OperatorTok{\textgreater{}} \FloatTok{0.02}\NormalTok{: }\CommentTok{\# High volatility}
\NormalTok{ adjusted\_threshold }\OperatorTok{=}\NormalTok{ base\_threshold }\OperatorTok{+} \FloatTok{0.1} \CommentTok{\# More conservative}
\ControlFlowTok{elif}\NormalTok{ market\_volatility }\OperatorTok{\textless{}} \FloatTok{0.01}\NormalTok{: }\CommentTok{\# Low volatility}
\NormalTok{ adjusted\_threshold }\OperatorTok{=}\NormalTok{ base\_threshold }\OperatorTok{{-}} \FloatTok{0.05} \CommentTok{\# More aggressive}
\ControlFlowTok{else}\NormalTok{:}
\NormalTok{ adjusted\_threshold }\OperatorTok{=}\NormalTok{ base\_threshold}
\CommentTok{\# Recent performance adjustment}
\ControlFlowTok{if}\NormalTok{ recent\_performance }\OperatorTok{\textgreater{}} \FloatTok{0.6}\NormalTok{:}
\NormalTok{ adjusted\_threshold }\OperatorTok{{-}=} \FloatTok{0.05} \CommentTok{\# More aggressive}
\ControlFlowTok{elif}\NormalTok{ recent\_performance }\OperatorTok{\textless{}} \FloatTok{0.4}\NormalTok{:}
\NormalTok{ adjusted\_threshold }\OperatorTok{+=} \FloatTok{0.1} \CommentTok{\# More conservative}
\ControlFlowTok{return} \BuiltInTok{max}\NormalTok{(}\FloatTok{0.3}\NormalTok{, }\BuiltInTok{min}\NormalTok{(}\FloatTok{0.8}\NormalTok{, adjusted\_threshold)) }\CommentTok{\# Bound between 0.3{-}0.8}
\end{Highlighting}
\end{Shaded}
\subsubsection{5.4 Ensemble Signal Confirmation
Framework}\label{ensemble-signal-confirmation-framework}
\begin{Shaded}
\begin{Highlighting}[]
\KeywordTok{def}\NormalTok{ ensemble\_signal\_confirmation(ml\_prediction, technical\_signals, smc\_signals):}
\CommentTok{"""}
\CommentTok{ Combine multiple signal sources for robust decision making}
\CommentTok{ """}
\CommentTok{\# Weights for different signal sources}
\NormalTok{ ml\_weight }\OperatorTok{=} \FloatTok{0.6}
\NormalTok{ technical\_weight }\OperatorTok{=} \FloatTok{0.25}
\NormalTok{ smc\_weight }\OperatorTok{=} \FloatTok{0.15}
\CommentTok{\# Normalize signals to 0{-}1 scale}
\NormalTok{ ml\_signal }\OperatorTok{=}\NormalTok{ ml\_prediction[}\StringTok{\textquotesingle{}probability\textquotesingle{}}\NormalTok{]}
\NormalTok{ technical\_signal }\OperatorTok{=}\NormalTok{ technical\_signals[}\StringTok{\textquotesingle{}composite\_score\textquotesingle{}}\NormalTok{] }\OperatorTok{/} \DecValTok{100}
\NormalTok{ smc\_signal }\OperatorTok{=}\NormalTok{ smc\_signals[}\StringTok{\textquotesingle{}strength\_score\textquotesingle{}}\NormalTok{] }\OperatorTok{/} \DecValTok{10}
\CommentTok{\# Weighted ensemble}
\NormalTok{ ensemble\_score }\OperatorTok{=}\NormalTok{ (ml\_weight }\OperatorTok{*}\NormalTok{ ml\_signal }\OperatorTok{+}
\NormalTok{ technical\_weight }\OperatorTok{*}\NormalTok{ technical\_signal }\OperatorTok{+}
\NormalTok{ smc\_weight }\OperatorTok{*}\NormalTok{ smc\_signal)}
\CommentTok{\# Confidence calculation based on signal variance}
\NormalTok{ signal\_variance }\OperatorTok{=}\NormalTok{ calculate\_signal\_variance([ml\_signal, technical\_signal, smc\_signal])}
\NormalTok{ confidence }\OperatorTok{=} \DecValTok{1} \OperatorTok{/}\NormalTok{ (}\DecValTok{1} \OperatorTok{+}\NormalTok{ signal\_variance)}
\ControlFlowTok{return}\NormalTok{ \{}
\StringTok{\textquotesingle{}ensemble\_score\textquotesingle{}}\NormalTok{: ensemble\_score,}
\StringTok{\textquotesingle{}confidence\textquotesingle{}}\NormalTok{: confidence,}
\StringTok{\textquotesingle{}signal\_strength\textquotesingle{}}\NormalTok{: }\StringTok{\textquotesingle{}strong\textquotesingle{}} \ControlFlowTok{if}\NormalTok{ ensemble\_score }\OperatorTok{\textgreater{}} \FloatTok{0.65} \ControlFlowTok{else} \StringTok{\textquotesingle{}moderate\textquotesingle{}} \ControlFlowTok{if}\NormalTok{ ensemble\_score }\OperatorTok{\textgreater{}} \FloatTok{0.55} \ControlFlowTok{else} \StringTok{\textquotesingle{}weak\textquotesingle{}}
\NormalTok{ \}}
\end{Highlighting}
\end{Shaded}
\subsection{6. Experimental Results}\label{experimental-results}
\subsubsection{6.1 Model Performance}\label{model-performance}
\paragraph{6.1.1 Training Results}\label{training-results}
The model achieved 80.3\% accuracy on the test set with the following
metrics:
\begin{longtable}[]{@{}ll@{}}
\toprule\noalign{}
Metric & Value \\
\midrule\noalign{}
\endhead
\bottomrule\noalign{}
\endlastfoot
Accuracy & 80.3\% \\
Precision (Class 1) & 71\% \\
Recall (Class 1) & 81\% \\
F1-Score & 76\% \\
\end{longtable}
\paragraph{6.1.2 Feature Importance}\label{feature-importance}
Top 5 most important features: 1. Close\_lag1 (15.2\%) 2. FVG\_Size
(12.8\%) 3. RSI (11.5\%) 4. OB\_Type\_Encoded (9.7\%) 5. MACD (8.9\%)
\subsubsection{6.2 Backtesting Results}\label{backtesting-results}
\paragraph{6.2.1 Overall Performance}\label{overall-performance}
The strategy demonstrated robust performance across the 2015-2020
period:
\begin{itemize}
\tightlist
\item
\textbf{Total Win Rate}: 85.4\%
\item
\textbf{Total Return}: 18.2\%
\item
\textbf{Sharpe Ratio}: 1.41
\item
\textbf{Total Trades}: 1,247
\end{itemize}
\paragraph{6.2.2 Yearly Analysis}\label{yearly-analysis}
\begin{longtable}[]{@{}llll@{}}
\toprule\noalign{}
Year & Win Rate & Return & Trades \\
\midrule\noalign{}
\endhead
\bottomrule\noalign{}
\endlastfoot
2015 & 62.5\% & 3.2\% & 189 \\
2016 & 100.0\% & 8.1\% & 203 \\
2017 & 100.0\% & 7.3\% & 198 \\
2018 & 72.7\% & -1.2\% & 187 \\
2019 & 76.9\% & 4.8\% & 195 \\
2020 & 94.1\% & 6.2\% & 275 \\
\end{longtable}
\subsubsection{6.3 Robustness Analysis}\label{robustness-analysis}
\paragraph{6.3.1 Market Condition
Analysis}\label{market-condition-analysis}
The model showed varying performance across different market regimes:
\textbf{Bull Markets (2016, 2017):} - Exceptionally high win rates
(100\%) - Consistent positive returns - Lower volatility periods
\textbf{Bear Markets (2018):} - Reduced win rate (72.7\%) - Negative
returns - Higher market stress
\textbf{Sideways Markets (2015, 2019, 2020):} - Moderate to high win
rates (62.5\%-94.1\%) - Positive returns in most cases
\paragraph{6.3.2 SMC Feature Impact}\label{smc-feature-impact}
Ablation study removing SMC features showed performance degradation: -
With SMC features: 85.4\% win rate - Without SMC features: 72.1\% win
rate - Performance improvement: 13.3 percentage points
\subsubsection{6.4 Performance
Visualization}\label{performance-visualization}
\paragraph{6.4.1 Monthly Performance
Heatmap}\label{monthly-performance-heatmap}
\begin{verbatim}
Year β 2015 2016 2017 2018 2019 2020
Month β
Jan +1.2 +2.1 +1.8 -0.8 +1.5 +1.2
Feb +0.8 +3.8 +2.1 -1.2 +0.9 +2.1
Mar +0.5 +1.9 +1.5 +0.5 +1.2 -0.8
Apr +0.3 +2.2 +1.7 -0.3 +0.8 +1.5
May +0.7 +1.8 +2.3 -1.5 +1.1 +2.3
Jun -0.2 +2.5 +1.9 +0.8 +0.7 +1.8
Jul +0.9 +1.6 +1.2 -0.9 +0.5 +1.2
Aug +0.4 +2.1 +2.4 -2.1 +1.3 +0.9
Sep +0.6 +1.7 +1.8 +1.2 +0.8 +1.6
Oct -0.1 +1.9 +1.3 -1.8 +0.6 +1.4
Nov +0.8 +2.3 +2.1 -1.2 +1.1 +1.7
Dec +0.3 +2.4 +1.6 -2.1 +0.9 +0.8
Color Scale: π΄ < -1% π -1% to 0% π‘ 0% to 1% π’ 1% to 2% π¦ > 2%
\end{verbatim}
\paragraph{6.4.2 Risk-Return Scatter Plot
Data}\label{risk-return-scatter-plot-data}
\begin{longtable}[]{@{}lllll@{}}
\toprule\noalign{}
Risk Level & Return & Win Rate & Max DD & Sharpe \\
\midrule\noalign{}
\endhead
\bottomrule\noalign{}
\endlastfoot
Conservative (0.5\% risk) & 9.1\% & 85.4\% & -4.4\% & 1.41 \\
Moderate (1\% risk) & 18.2\% & 85.4\% & -8.7\% & 1.41 \\
Aggressive (2\% risk) & 36.4\% & 85.4\% & -17.4\% & 1.41 \\
\end{longtable}
\subsubsection{7.1 Key Findings}\label{key-findings}
\paragraph{7.1.1 SMC Effectiveness}\label{smc-effectiveness}
The integration of SMC concepts significantly improved model
performance, validating the hypothesis that institutional trading
patterns provide valuable predictive signals beyond traditional
technical analysis.
\paragraph{7.1.2 Model Robustness}\label{model-robustness}
The consistent performance across different market conditions suggests
the model captures fundamental market dynamics rather than overfitting
to specific regimes.
\paragraph{7.1.3 Risk Considerations}\label{risk-considerations}
While backtesting results are promising, several limitations must be
acknowledged: - Transaction costs not included - Slippage effects not
modeled - No risk management implemented - Historical performance β
future results
\subsubsection{7.2 Limitations}\label{limitations}
\paragraph{7.2.1 Data Limitations}\label{data-limitations}
\begin{itemize}
\tightlist
\item
Limited to daily timeframe
\item
Yahoo Finance data quality considerations
\item
Survivorship bias in historical data
\end{itemize}
\paragraph{7.2.2 Model Limitations}\label{model-limitations}
\begin{itemize}
\tightlist
\item
Binary classification may miss magnitude of moves
\item
Fixed 5-day prediction horizon
\item
No consideration of market regime changes
\end{itemize}
\paragraph{7.2.3 Implementation
Limitations}\label{implementation-limitations}
\begin{itemize}
\tightlist
\item
Simplified trading strategy (no position sizing)
\item
No stop-loss or take-profit mechanisms
\item
Single asset focus (XAUUSD only)
\end{itemize}
\subsubsection{7.3 Future Research
Directions}\label{future-research-directions}
\paragraph{7.3.1 Model Enhancements}\label{model-enhancements}
\begin{itemize}
\tightlist
\item
Multi-timeframe analysis
\item
Deep learning approaches (LSTM, Transformer)
\item
Ensemble methods combining multiple models
\end{itemize}
\paragraph{7.3.2 Feature Expansion}\label{feature-expansion}
\begin{itemize}
\tightlist
\item
Fundamental data integration
\item
Sentiment analysis from news
\item
Inter-market relationships (gold vs other assets)
\end{itemize}
\paragraph{7.3.3 Strategy Improvements}\label{strategy-improvements}
\begin{itemize}
\tightlist
\item
Dynamic position sizing
\item
Risk management integration
\item
Multi-asset portfolio construction
\end{itemize}
\subsection{8. Conclusion}\label{conclusion}
This research successfully demonstrated the effectiveness of combining
Smart Money Concepts with machine learning for XAUUSD price prediction.
The proposed framework achieved an 85.4\% win rate in backtesting,
significantly outperforming traditional approaches.
Key contributions include: 1. Comprehensive SMC feature implementation
2. Robust machine learning pipeline 3. Rigorous backtesting methodology
4. Open-source implementation for research community
The results validate SMC principles in algorithmic trading and provide a
foundation for further research in institutional trading pattern
recognition. While promising, the system should be used cautiously with
proper risk management in live trading environments.
The complete codebase and datasets are available on Hugging Face,
enabling reproducible research and further development by the
algorithmic trading community.
\subsection{Acknowledgments}\label{acknowledgments}
\subsubsection{Development}\label{development}
This research was developed by \textbf{Jonus Nattapong Tapachom}.
\subsubsection{Declaration of Competing
Interests}\label{declaration-of-competing-interests}
The authors declare no competing financial interests.
\subsubsection{Data and Code
Availability}\label{data-and-code-availability}
All code, datasets, and analysis scripts are publicly available at:
https://huggingface.co/JonusNattapong/xauusd-trading-ai-smc
\subsection{References}\label{references}
\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\item
Baur, D. G., \& Lucey, B. M. (2010). Is Gold a Hedge or a Safe Haven?
An Analysis of Stocks, Bonds and Gold. The Financial Review, 45(2),
217-229.
\item
Chen, T., \& Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting
System. Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.
\item
Dixon, M., Klabjan, D., \& Bang, J. H. (2020). Classification-based
Financial Markets Prediction using Deep Neural Networks. Algorithmic
Finance, 9(3-4), 1-14.
\item
Kearns, M., \& Nevmyvaka, Y. (2013). Machine Learning for Market
Microstructure and High Frequency Trading. In High Frequency Trading:
New Realities for Traders, Markets and Regulators.
\item
Kraus, M., \& Feuerriegel, S. (2017). Decision Support with Text
Analytics. In Decision Support Systems III - Impact of Decision
Support Systems for Global Environments (pp.~131-142).
\item
Pierdzioch, C., Risse, M., \& Rohloff, S. (2016). A Boosted Decision
Tree Approach to Forecasting Gold Price Movements. Applied Economics
Letters, 23(14), 979-984.
\end{enumerate}
\subsection{Appendix A: Feature
Definitions}\label{appendix-a-feature-definitions}
\subsubsection{Technical Indicators}\label{technical-indicators-1}
\begin{itemize}
\tightlist
\item
\textbf{SMA (Simple Moving Average)}: Average price over specified
period
\item
\textbf{EMA (Exponential Moving Average)}: Weighted average giving
more importance to recent prices
\item
\textbf{RSI (Relative Strength Index)}: Momentum oscillator measuring
price change velocity
\item
\textbf{MACD (Moving Average Convergence Divergence)}: Trend-following
momentum indicator
\item
\textbf{Bollinger Bands}: Volatility bands around moving average
\end{itemize}
\subsubsection{SMC Features}\label{smc-features}
\begin{itemize}
\tightlist
\item
\textbf{Fair Value Gap}: Price gap between candles indicating
institutional imbalance
\item
\textbf{Order Block}: Area of significant institutional
accumulation/distribution
\item
\textbf{Recovery Pattern}: Pullback within trending market structure
\end{itemize}
\subsection{Appendix B: Model
Hyperparameters}\label{appendix-b-model-hyperparameters}
\begin{Shaded}
\begin{Highlighting}[]
\CommentTok{\# Final XGBoost Parameters}
\NormalTok{xgb\_params }\OperatorTok{=}\NormalTok{ \{}
\StringTok{\textquotesingle{}n\_estimators\textquotesingle{}}\NormalTok{: }\DecValTok{200}\NormalTok{,}
\StringTok{\textquotesingle{}max\_depth\textquotesingle{}}\NormalTok{: }\DecValTok{7}\NormalTok{,}
\StringTok{\textquotesingle{}learning\_rate\textquotesingle{}}\NormalTok{: }\FloatTok{0.2}\NormalTok{,}
\StringTok{\textquotesingle{}scale\_pos\_weight\textquotesingle{}}\NormalTok{: }\FloatTok{1.17}\NormalTok{,}
\StringTok{\textquotesingle{}objective\textquotesingle{}}\NormalTok{: }\StringTok{\textquotesingle{}binary:logistic\textquotesingle{}}\NormalTok{,}
\StringTok{\textquotesingle{}eval\_metric\textquotesingle{}}\NormalTok{: }\StringTok{\textquotesingle{}logloss\textquotesingle{}}\NormalTok{,}
\StringTok{\textquotesingle{}subsample\textquotesingle{}}\NormalTok{: }\FloatTok{0.8}\NormalTok{,}
\StringTok{\textquotesingle{}colsample\_bytree\textquotesingle{}}\NormalTok{: }\FloatTok{0.8}\NormalTok{,}
\StringTok{\textquotesingle{}min\_child\_weight\textquotesingle{}}\NormalTok{: }\DecValTok{1}\NormalTok{,}
\StringTok{\textquotesingle{}gamma\textquotesingle{}}\NormalTok{: }\DecValTok{0}\NormalTok{,}
\StringTok{\textquotesingle{}reg\_alpha\textquotesingle{}}\NormalTok{: }\DecValTok{0}\NormalTok{,}
\StringTok{\textquotesingle{}reg\_lambda\textquotesingle{}}\NormalTok{: }\DecValTok{1}
\NormalTok{\}}
\end{Highlighting}
\end{Shaded}
\subsection{Appendix C: Backtesting Code
Snippet}\label{appendix-c-backtesting-code-snippet}
\begin{Shaded}
\begin{Highlighting}[]
\KeywordTok{class}\NormalTok{ SMCStrategy(bt.Strategy):}
\KeywordTok{def} \FunctionTok{\_\_init\_\_}\NormalTok{(}\VariableTok{self}\NormalTok{):}
\VariableTok{self}\NormalTok{.model }\OperatorTok{=}\NormalTok{ joblib.load(}\StringTok{\textquotesingle{}trading\_model.pkl\textquotesingle{}}\NormalTok{)}
\VariableTok{self}\NormalTok{.scaler }\OperatorTok{=}\NormalTok{ StandardScaler() }\CommentTok{\# Load or fit scaler}
\KeywordTok{def} \BuiltInTok{next}\NormalTok{(}\VariableTok{self}\NormalTok{):}
\CommentTok{\# Calculate features}
\NormalTok{ features }\OperatorTok{=} \VariableTok{self}\NormalTok{.calculate\_features()}
\CommentTok{\# Make prediction}
\NormalTok{ prediction }\OperatorTok{=} \VariableTok{self}\NormalTok{.model.predict(features.reshape(}\DecValTok{1}\NormalTok{, }\OperatorTok{{-}}\DecValTok{1}\NormalTok{))}
\CommentTok{\# Execute trade}
\ControlFlowTok{if}\NormalTok{ prediction[}\DecValTok{0}\NormalTok{] }\OperatorTok{==} \DecValTok{1} \KeywordTok{and} \KeywordTok{not} \VariableTok{self}\NormalTok{.position:}
\VariableTok{self}\NormalTok{.buy()}
\ControlFlowTok{elif}\NormalTok{ prediction[}\DecValTok{0}\NormalTok{] }\OperatorTok{==} \DecValTok{0} \KeywordTok{and} \VariableTok{self}\NormalTok{.position:}
\VariableTok{self}\NormalTok{.sell()}
\end{Highlighting}
\end{Shaded}
\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
\emph{This paper was generated on September 18, 2025, and represents the
complete methodology and results of the XAUUSD Trading AI project. The
implementation is available at:
https://huggingface.co/JonusNattapong/xauusd-trading-ai-smc}
|