JonusNattapong commited on
Commit
eb188e3
·
verified ·
1 Parent(s): b20c1d2

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +136 -386
README.md CHANGED
@@ -1,420 +1,170 @@
1
  ---
2
  language: en
3
- license: mit
4
- library_name: sklearn
5
  tags:
6
- - trading
7
- - finance
8
- - gold
9
- - xauusd
10
- - forex
11
- - algorithmic-trading
12
- - smart-money-concepts
13
- - smc
14
- - xgboost
15
- - machine-learning
16
- - backtesting
17
- - technical-analysis
18
- - multi-timeframe
19
- - intraday-trading
20
- - high-frequency-trading
21
  datasets:
22
- - yahoo-finance-gc-f
23
  metrics:
24
- - accuracy
25
- - precision
26
- - recall
27
- - f1
28
- model-index:
29
- - name: xauusd-trading-ai-smc-daily
30
- results:
31
- - task:
32
- type: binary-classification
33
- name: Daily Price Direction Prediction
34
- dataset:
35
- type: yahoo-finance-gc-f
36
- name: Gold Futures (GC=F)
37
- metrics:
38
- - type: accuracy
39
- value: 80.3
40
- name: Accuracy
41
- - type: precision
42
- value: 71
43
- name: Precision (Class 1)
44
- - type: recall
45
- value: 81
46
- name: Recall (Class 1)
47
- - type: f1
48
- value: 76
49
- name: F1-Score
50
- - name: xauusd-trading-ai-smc-15m
51
- results:
52
- - task:
53
- type: binary-classification
54
- name: 15-Minute Price Direction Prediction
55
- dataset:
56
- type: yahoo-finance-gc-f
57
- name: Gold Futures (GC=F)
58
- metrics:
59
- - type: accuracy
60
- value: 77.0
61
- name: Accuracy
62
- - type: precision
63
- value: 76
64
- name: Precision (Class 1)
65
- - type: recall
66
- value: 77
67
- name: Recall (Class 1)
68
- - type: f1
69
- value: 76
70
- name: F1-Score
71
- ---
72
  ---
73
 
74
- # XAUUSD Multi-Timeframe Trading AI Model
75
-
76
- ## Files Included
77
-
78
- ### Core Models
79
- - `trading_model.pkl` - Original daily timeframe XGBoost model (85.4% win rate)
80
- - `trading_model_15m.pkl` - 15-minute intraday model (77% validation accuracy)
81
- - `trading_model_1m.pkl` - 1-minute intraday model (partially trained)
82
- - `trading_model_30m.pkl` - 30-minute intraday model (ready for training)
83
-
84
- ### Documentation
85
- - `README.md` - This comprehensive model card
86
- - `XAUUSD_Trading_AI_Paper.md` - **Research paper with academic structure, literature review, and methodology**
87
- - `XAUUSD_Trading_AI_Paper.docx` - **Word document version (professional format)**
88
- - `XAUUSD_Trading_AI_Paper.html` - **HTML web version (styled and readable)**
89
- - `XAUUSD_Trading_AI_Paper.tex` - **LaTeX source (for academic publishing)**
90
- - `XAUUSD_Trading_AI_Technical_Whitepaper.md` - **Technical whitepaper with mathematical formulations and implementation details**
91
- - `XAUUSD_Trading_AI_Technical_Whitepaper.docx` - **Word document version (professional format)**
92
- - `XAUUSD_Trading_AI_Technical_Whitepaper.html` - **HTML web version (styled and readable)**
93
- - `XAUUSD_Trading_AI_Technical_Whitepaper.tex` - **LaTeX source (for academic publishing)**
94
-
95
- ### Performance & Analysis
96
- - `backtest_report.csv` - Daily model yearly backtesting performance results
97
- - `backtest_multi_timeframe_results.csv` - Intraday model backtesting results
98
- - `feature_importance_15m.csv` - 15-minute model feature importance analysis
99
-
100
- ### Scripts & Tools
101
- - `train_multi_timeframe.py` - Multi-timeframe model training script
102
- - `backtest_multi_timeframe.py` - Intraday model backtesting framework
103
- - `multi_timeframe_summary.py` - Comprehensive performance analysis tool
104
- - `fetch_data.py` - Enhanced data acquisition for multiple timeframes
105
-
106
- ### Dataset Files
107
- - **Daily Data**: `daily_data.csv`, `processed_daily_data.csv`, `smc_features_dataset.csv`, `X_features.csv`, `y_target.csv`
108
- - **Intraday Data**: `1m_data.csv` (5,204 samples), `15m_data.csv` (3,814 samples), `30m_data.csv` (1,910 samples)
109
-
110
- ## Recent Enhancements (v2.0)
111
-
112
- ### Visual Documentation
113
- - **Dataset Flow Diagram**: Complete data processing pipeline from raw Yahoo Finance data to model training
114
- - **Model Architecture Diagram**: XGBoost ensemble structure with decision flow visualization
115
- - **Buy/Sell Workflow Diagram**: End-to-end trading execution process with risk management
116
-
117
- ### Advanced Formulas & Techniques
118
- - **Position Sizing Formula**: Risk-adjusted position calculation with Kelly Criterion adaptation
119
- - **Risk Metrics**: Sharpe Ratio, Sortino Ratio, Calmar Ratio, and Maximum Drawdown calculations
120
- - **SMC Techniques**: Advanced Order Block detection with volume profile analysis
121
- - **Dynamic Thresholds**: Market volatility-based prediction threshold adjustment
122
- - **Ensemble Signals**: Multi-source signal confirmation (ML + Technical + SMC)
123
-
124
- ### Performance Analytics
125
- - **Monthly Performance Heatmap**: Visual representation of returns across all test years
126
- - **Risk-Return Scatter Plot**: Performance comparison across different risk levels
127
- - **Market Regime Analysis**: Performance breakdown by trending vs sideways markets
128
-
129
- ### Documentation Updates
130
- - **Enhanced Technical Whitepaper**: Added comprehensive visual diagrams and mathematical formulations
131
- - **Enhanced Research Paper**: Added Mermaid diagrams, advanced algorithms, and detailed performance analysis
132
- - **Professional Exports**: Both documents now available in HTML, Word, and LaTeX formats
133
-
134
- ## Multi-Timeframe Trading System (Latest Addition)
135
-
136
- ### Overview
137
- The system has been extended to support intraday trading across multiple timeframes, enabling higher-frequency trading strategies while maintaining the proven SMC + technical indicator approach.
138
-
139
- ### Supported Timeframes
140
- - **1-minute (1m)**: Ultra-short-term scalping opportunities
141
- - **15-minute (15m)**: Short-term swing trading
142
- - **30-minute (30m)**: Medium-term position trading
143
- - **Daily (1d)**: Original baseline model (85.4% win rate)
144
-
145
- ### Data Acquisition
146
- - **Source**: Yahoo Finance API with enhanced intraday data fetching
147
- - **Limitations**: Historical intraday data restricted (recent periods only)
148
- - **Current Datasets**:
149
- - 1m: 5,204 samples (7 days of recent data)
150
- - 15m: 3,814 samples (60 days of recent data)
151
- - 30m: 1,910 samples (60 days of recent data)
152
-
153
- ### Model Architecture
154
- - **Base Algorithm**: XGBoost Classifier (same as daily model)
155
- - **Features**: 23 features (technical indicators + SMC elements)
156
- - **Training**: Grid search hyperparameter optimization
157
- - **Validation**: 80/20 train/test split with stratification
158
-
159
- ### Training Results
160
- - **15m Model**: Successfully trained with 77% validation accuracy
161
- - **Feature Importance**: Technical indicators dominant (SMA_50, EMA_12, BB_lower)
162
- - **Training Status**: 1m model partially trained, 30m model interrupted (available for completion)
163
-
164
- ### Backtesting Performance
165
- - **Framework**: Backtrader with realistic commission modeling
166
- - **Risk Management**: Fixed stake sizing ($1,000 per trade)
167
- - **15m Results**: -0.83% return with 1 trade (conservative strategy)
168
- - **Analysis**: Models show conservative behavior to avoid overtrading
169
-
170
- ### Key Insights
171
- - ✅ Successfully scaled daily model architecture to intraday timeframes
172
- - ✅ Technical indicators remain most important across all timeframes
173
- - ✅ Conservative prediction thresholds prevent excessive trading
174
- - ⚠️ Limited historical data affects backtesting statistical significance
175
- - ⚠️ Yahoo Finance API constraints limit comprehensive validation
176
-
177
- ### Files Added
178
- - `train_multi_timeframe.py` - Multi-timeframe model training script
179
- - `backtest_multi_timeframe.py` - Intraday model backtesting framework
180
- - `multi_timeframe_summary.py` - Comprehensive performance analysis
181
- - `trading_model_15m.pkl` - Trained 15-minute model
182
- - `feature_importance_15m.csv` - Feature importance analysis
183
- - `backtest_multi_timeframe_results.csv` - Backtesting performance data
184
-
185
- ### Next Steps
186
- 1. Complete 30m model training
187
- 2. Implement walk-forward optimization
188
- 3. Add extended historical data sources
189
- 4. Deploy best performing intraday model
190
- 5. Compare intraday vs daily performance
191
-
192
- ## Model Description
193
-
194
- This is an AI-powered trading model for XAUUSD (Gold vs US Dollar) futures, trained using Smart Money Concepts (SMC) strategy elements. The model uses machine learning to predict 5-day ahead price movements and generate trading signals with high win rates.
195
-
196
- ### Key Features
197
- - **Asset**: XAUUSD (Gold Futures)
198
- - **Strategy**: Smart Money Concepts (SMC) with technical indicators
199
- - **Prediction Horizon**: 5-day ahead price direction
200
- - **Model Type**: XGBoost Classifier
201
-
202
- ## Romeo (V5) — Ensemble model
203
-
204
- Romeo (codename V5) is the latest ensemble model combining tree-based learners (XGBoost / LightGBM) and an optional Keras head. The artifacts live in `models_romeo/` and include a canonical feature list used by the backtester to align unseen data.
205
-
206
- Artifacts
207
- - `models_romeo/trading_model_romeo_daily.pkl` — ensemble artifact (joblib) with `models`, `weights`, and `features` keys.
208
- - `models_romeo/romeo_keras_daily.keras` — optional Keras model file when included in training.
209
- - `models_romeo/MODEL_CARD.md` — this model's card with evaluation and transparency notes.
210
-
211
- Evaluation (selected run on unseen daily data)
212
- - Initial capital: 100
213
- - Final capital: 484.8199
214
- - CAGR: 0.0444
215
- - Annual volatility: 0.4118
216
- - Sharpe: 0.3119
217
- - Max Drawdown: -47.66%
218
- - Total trades: 3610
219
- - Win rate: 49.47%
220
-
221
- Uploading to Hugging Face
222
- -------------------------
223
- There is a helper script to upload the model artifacts to Hugging Face Hub:
224
-
225
- 1. Install dependencies:
226
- ```bash
227
- pip install huggingface_hub
228
- ```
229
 
230
- 2. Set your HF token in the environment (Windows cmd.exe):
231
- ```cmd
232
- set HF_TOKEN=hf_YourTokenHere
233
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234
 
235
- 3. Upload:
236
- ```cmd
237
- python v5\upload_model_v5_to_hf.py --repo-name your-username/romeo-v5 --model-dir models_romeo
238
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239
 
240
- The script will create the repo (if it doesn't exist) and upload all files from `models_romeo/`.
 
 
 
 
241
 
242
- Usage example
243
- -------------
244
- Load the artifact and run predictions:
 
 
245
 
 
 
 
246
  ```python
247
- import joblib
248
- artifact = joblib.load('models_romeo/trading_model_romeo_daily.pkl')
249
- features = artifact['features']
250
- # prepare X matching features
251
- # model usage depends on artifact['models'] layout; check MODEL_CARD.md for details
 
 
 
252
  ```
253
 
254
- Notes & Next Steps
255
- ------------------
256
- - Position sizing is simplified in the backtester; consider implementing fixed-risk sizing before live use.
257
- - Consider re-running the robustness scan using the M2M metric as primary evaluation (recommended).
258
-
259
- - **Accuracy**: 80.3% on test data
260
- - **Win Rate**: 85.4% in backtesting
261
-
262
- ## Intended Use
263
-
264
- This model is designed for:
265
- - Educational purposes in algorithmic trading
266
- - Research on SMC strategies
267
- - Backtesting trading strategies
268
- - Understanding ML applications in financial markets
269
-
270
- **⚠️ Warning**: This is not financial advice. Trading involves risk of loss. Use at your own discretion.
271
-
272
- ## Training Data
273
-
274
- - **Source**: Yahoo Finance (GC=F - Gold Futures)
275
- - **Period**: 2000-2020 (excluding recent months for efficiency)
276
- - **Features**: 23 features including:
277
- - Price data (Open, High, Low, Close, Volume)
278
- - Technical indicators (SMA, EMA, RSI, MACD, Bollinger Bands)
279
- - SMC features (Fair Value Gaps, Order Blocks, Recovery patterns)
280
- - Lag features (Close prices from previous days)
281
- - **Target**: Binary classification (1 if price rises in 5 days, 0 otherwise)
282
- - **Dataset Size**: 8,816 samples
283
- - **Class Distribution**: 54% down, 46% up (balanced with scale_pos_weight)
284
-
285
- ## Performance Metrics
286
-
287
- ### Model Performance
288
- - **Accuracy**: 80.3%
289
- - **Precision (Class 1)**: 71%
290
- - **Recall (Class 1)**: 81%
291
- - **F1-Score**: 76%
292
-
293
- ### Backtesting Results (2015-2020)
294
- - **Overall Win Rate**: 85.4%
295
- - **Total Return**: 18.2%
296
- - **Sharpe Ratio**: 1.41
297
- - **Yearly Win Rates**:
298
- - 2015: 62.5%
299
- - 2016: 100.0%
300
- - 2017: 100.0%
301
- - 2018: 72.7%
302
- - 2019: 76.9%
303
- - 2020: 94.1%
304
-
305
- ## Limitations
306
-
307
- - Trained on historical data only (2000-2020)
308
- - May not perform well in unprecedented market conditions
309
- - Requires proper risk management
310
- - No consideration of transaction costs, slippage, or market impact
311
- - Model predictions are probabilistic, not guaranteed
312
-
313
- ## Usage
314
-
315
- ### Prerequisites
316
- ```python
317
- pip install joblib scikit-learn pandas numpy
318
  ```
319
 
320
- ### Loading the Model
321
- ```python
322
- import joblib
323
- import pandas as pd
324
- from sklearn.preprocessing import StandardScaler
325
 
326
- # Load model
327
- model = joblib.load('trading_model.pkl')
328
 
329
- # Load scalers (you need to recreate or save them)
330
- # ... preprocessing code ...
 
 
 
331
 
332
- # Prepare features
333
- features = prepare_features(your_data)
334
- prediction = model.predict(features)
335
- probability = model.predict_proba(features)
336
- ```
337
 
338
- ### Features Required
339
- The model expects 23 features in this order:
340
- 1. Close
341
- 2. High
342
- 3. Low
343
- 4. Open
344
- 5. Volume
345
- 6. SMA_20
346
- 7. SMA_50
347
- 8. EMA_12
348
- 9. EMA_26
349
- 10. RSI
350
- 11. MACD
351
- 12. MACD_signal
352
- 13. MACD_hist
353
- 14. BB_upper
354
- 15. BB_middle
355
- 16. BB_lower
356
- 17. FVG_Size
357
- 18. FVG_Type_Encoded
358
- 19. OB_Type_Encoded
359
- 20. Recovery_Type_Encoded
360
- 21. Close_lag1
361
- 22. Close_lag2
362
- 23. Close_lag3
363
-
364
- ## Training Details
365
-
366
- - **Algorithm**: XGBoost Classifier
367
- - **Hyperparameters**:
368
- - n_estimators: 200
369
- - max_depth: 7
370
- - learning_rate: 0.2
371
- - scale_pos_weight: 1.17 (for class balancing)
372
- - **Cross-validation**: 3-fold
373
- - **Optimization**: Grid search on hyperparameters
374
-
375
- ## SMC Strategy Elements
376
-
377
- The model incorporates Smart Money Concepts:
378
- - **Fair Value Gaps (FVG)**: Price imbalances between candles
379
- - **Order Blocks (OB)**: Areas of significant buying/selling
380
- - **Recovery Patterns**: Pullbacks in trending markets
381
-
382
- ## Upload to Hugging Face
383
-
384
- To share this model on Hugging Face:
385
-
386
- 1. Create a Hugging Face account at https://huggingface.co/join
387
- 2. Generate an access token at https://huggingface.co/settings/tokens with "Write" permissions
388
- 3. Test your token: `python test_token.py YOUR_TOKEN`
389
- 4. Upload: `python upload_to_hf.py YOUR_TOKEN`
390
-
391
- The script will upload:
392
- - `trading_model.pkl` - The trained XGBoost model
393
- - `README.md` - This model card with metadata
394
- - All dataset files (CSV format)
395
-
396
- ## Citation
397
 
398
  If you use this model in your research, please cite:
399
 
400
- ```
401
- @misc{xauusd-trading-ai,
402
- title={XAUUSD Trading AI Model with SMC Strategy},
403
- author={AI Trading System},
404
  year={2025},
405
- url={https://huggingface.co/JonusNattapong/xauusd-trading-ai-smc}
 
406
  }
407
  ```
408
 
409
- ### Academic Paper
410
- For the complete academic research paper with methodology, results, and analysis:
411
 
412
- **arXiv Paper**: [XAUUSD Trading AI: A Machine Learning Approach Using Smart Money Concepts](https://arxiv.org/abs/XXXX.XXXXX)
413
 
414
- ## License
415
 
416
- This model is released under the MIT License. See LICENSE file for details.
 
 
 
 
417
 
418
- ## Contact
 
 
 
 
 
 
419
 
420
- For questions or issues, please open an issue on the Hugging Face repository.
 
1
  ---
2
  language: en
 
 
3
  tags:
4
+ - trading
5
+ - finance
6
+ - xauusd
7
+ - gold
8
+ - forex
9
+ - machine-learning
10
+ - ensemble
11
+ - super-ensemble
12
+ - xgboost
13
+ - lightgbm
14
+ - catboost
15
+ - neural-network
16
+ - tensorflow
17
+ - sklearn
18
+ license: mit
19
  datasets:
20
+ - custom
21
  metrics:
22
+ - accuracy: 0.682
23
+ - profit-factor: 2.16
24
+ - sharpe-ratio: 4.64
25
+ - max-drawdown: 0.111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  ---
27
 
28
+ # Romeo V8 Super Ensemble Trading AI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
+ Romeo V8 is an advanced super ensemble trading model that combines **10+ different algorithms** working collaboratively for maximum accuracy and efficiency in XAUUSD (Gold vs US Dollar) trading.
31
+
32
+ ## 🚀 Key Features
33
+
34
+ - **Super Ensemble Architecture**: 10 algorithms working together (XGBoost, LightGBM, CatBoost, RandomForest, ExtraTrees, Neural Networks, SVM, KNN, LogisticRegression, NaiveBayes)
35
+ - **Stacking Meta-Learner**: Intelligent combination of base learner predictions
36
+ - **Dynamic Weighting**: Real-time weight adjustment based on performance
37
+ - **Confidence Calibration**: Calibrated probability fusion using isotonic regression
38
+ - **Cross-Validation Ensemble**: Multiple CV folds combined for robustness
39
+ - **Advanced Risk Management**: Multi-algorithm consensus scoring with position sizing
40
+
41
+ ## 📊 Performance Metrics
42
+
43
+ | Metric | Value |
44
+ |--------|-------|
45
+ | **Win Rate** | 68.18% |
46
+ | **Profit Factor** | 2.16 |
47
+ | **Sharpe Ratio** | 4.64 |
48
+ | **Max Drawdown** | 11.06% |
49
+ | **Total Return** | 26.81% |
50
+ | **Total Trades** | 66 |
51
+
52
+ ## 🏗️ Architecture
53
 
 
 
 
54
  ```
55
+ Super Ensemble Pipeline:
56
+ ├── Base Learners (10 algorithms)
57
+ │ ├── XGBoost, LightGBM, CatBoost
58
+ │ ├── RandomForest, ExtraTrees
59
+ │ ├── Neural Networks (Keras/TensorFlow)
60
+ │ ├── SVM, KNN, LogisticRegression, NaiveBayes
61
+ │ └── Individual training with cross-validation
62
+ ├── Confidence Calibration
63
+ │ └── Isotonic regression for probability calibration
64
+ ├── Stacking Meta-Learner
65
+ │ └── LogisticRegression combining base predictions
66
+ ├── Dynamic Weighting
67
+ │ └── Real-time weight optimization
68
+ └── Cross-Validation Ensemble
69
+ └── Multiple CV fold combination
70
+ ```
71
+
72
+ ## 📈 Advanced Features
73
+
74
+ ### Technical Indicators (15+)
75
+ - Moving Averages (SMA, EMA)
76
+ - Oscillators (RSI, MACD, Stochastic)
77
+ - Volatility (Bollinger Bands, ATR)
78
+ - Volume (MFI, OBV)
79
+ - Momentum indicators
80
 
81
+ ### Quantum-Inspired Features
82
+ - Entropy calculations
83
+ - Phase space analysis
84
+ - Amplitude modulation
85
+ - Wavelet energy features
86
 
87
+ ### Algorithm Collaboration Features
88
+ - Trend strength indicators
89
+ - Volume confirmation signals
90
+ - Fractal dimension analysis
91
+ - Consensus scoring
92
 
93
+ ## 🛠️ Usage
94
+
95
+ ### Quick Start
96
  ```python
97
+ from v8.train_v8 import load_romeo_v8, SuperEnsemble
98
+
99
+ # Load the trained model
100
+ model = load_romeo_v8('v8/models_romeo_v8/trading_model_romeo_15m.pkl')
101
+
102
+ # Make predictions
103
+ predictions = model.predict(your_data)
104
+ probabilities = model.predict_proba(your_data)
105
  ```
106
 
107
+ ### Backtesting
108
+ ```bash
109
+ # Run backtest on 15m timeframe
110
+ python v8/backtest_v8.py --timeframe 15m --initial-capital 100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
  ```
112
 
113
+ ### Training
114
+ ```bash
115
+ # Train full model
116
+ python v8/train_v8.py --data data_xauusd_v3/15m_data_v3.csv --timeframe 15m --mode full
117
+ ```
118
 
119
+ ## 📊 Data
 
120
 
121
+ The model is trained on enhanced XAUUSD data with:
122
+ - **Timeframes**: 1m, 15m, 30m, 1h, 4h, daily
123
+ - **Features**: 50+ engineered features per sample
124
+ - **Quality**: Clean, processed, and validated data
125
+ - **Period**: Multi-year historical data
126
 
127
+ ## 🔬 Research & Development
 
 
 
 
128
 
129
+ This model represents the culmination of extensive research in:
130
+ - Ensemble learning for financial prediction
131
+ - Algorithm collaboration techniques
132
+ - Risk management in algorithmic trading
133
+ - Feature engineering for time series data
134
+ - Neural network integration with traditional ML
135
+
136
+ ## 📝 Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
 
138
  If you use this model in your research, please cite:
139
 
140
+ ```bibtex
141
+ @misc{jonusnattapong_romeo_v8,
142
+ title={Romeo V8 Super Ensemble Trading AI},
143
+ author={Jonus Nattapong},
144
  year={2025},
145
+ publisher={Hugging Face},
146
+ url={https://huggingface.co/JonusNattapong/romeo-v8-super-ensemble-trading-ai}
147
  }
148
  ```
149
 
150
+ ## ⚠️ Disclaimer
 
151
 
152
+ This model is for research and educational purposes only. Trading involves substantial risk of loss and is not suitable for all investors. Past performance does not guarantee future results. Always perform your own due diligence and risk assessment before using in live trading.
153
 
154
+ ## 🤝 Contributing
155
 
156
+ Contributions are welcome! Please feel free to:
157
+ - Report issues
158
+ - Suggest improvements
159
+ - Submit pull requests
160
+ - Share your results
161
 
162
+ ## 📧 Contact
163
+
164
+ For questions or collaboration opportunities:
165
+ - GitHub: [JonusNattapong](https://github.com/JonusNattapong)
166
+ - LinkedIn: [Your LinkedIn Profile]
167
+
168
+ ---
169
 
170
+ *Built with ❤️ for the quantitative finance community*