#!/usr/bin/env python3 """ XAUUSD Trading AI V4 Quantum - Usage Example Quantum Neural Ensemble Prediction """ import joblib import pandas as pd import numpy as np import yfinance as yf from datetime import datetime, timedelta class QuantumFeatureEngineer: """Simplified quantum feature engineer for inference""" def __init__(self, scalers, pca, feature_cols): self.scalers = scalers self.pca = pca self.feature_cols = feature_cols def process(self, df): """Apply quantum feature engineering""" # Simplified version - implement full quantum features for production df = df.copy() # Basic features (implement full QuantumFeatureEngineer for production) df['returns'] = df['Close'].pct_change() df['rsi_14'] = 50 # Placeholder df['macd'] = 0 # Placeholder df['hurst_exponent'] = 0.5 # Placeholder df['fractal_dimension'] = 1.5 # Placeholder # Fill missing features for col in self.feature_cols: if col not in df.columns: df[col] = 0 # Scale and PCA features_scaled = self.scalers['robust'].transform(df[self.feature_cols]) features_pca = self.pca.transform(features_scaled) return np.hstack([features_scaled, features_pca]) def predict_with_v4_quantum(timeframe='daily'): """Make quantum predictions using V4 ensemble""" # Load quantum ensemble ensemble = joblib.load(f'trading_model_v4_quantum_{timeframe}.pkl') # Load quantum components scalers = joblib.load(f'quantum_scaler_v4_{timeframe}.pkl') pca = joblib.load(f'quantum_pca_v4_{timeframe}.pkl') with open(f'quantum_features_v4_{timeframe}.json', 'r') as f: feature_cols = json.load(f) # Initialize quantum feature engineer quantum_engineer = QuantumFeatureEngineer(scalers, pca, feature_cols) # Fetch latest data symbol = 'GC=F' end_date = datetime.now() start_date = end_date - timedelta(days=200) df = yf.download(symbol, start=start_date, end=end_date, progress=False) if isinstance(df.columns, pd.MultiIndex): df.columns = df.columns.droplevel(1) # Apply quantum feature engineering quantum_features = quantum_engineer.process(df) # Make quantum prediction (latest data point) latest_features = quantum_features[-1:].reshape(1, -1) prediction, probability = ensemble.predict_ensemble(pd.DataFrame(latest_features)) direction = "UP 📈" if prediction[0] == 1 else "DOWN 📉" quantum_prob = probability[0] if hasattr(probability, '__len__') else probability print(f"V4 Quantum Ensemble Prediction for {timeframe}:") print(f"Direction: {direction}") print(f"Quantum Probability: {quantum_prob:.3f}") print(f"Confidence: {'High' if abs(quantum_prob - 0.5) > 0.2 else 'Medium'}") return prediction[0], quantum_prob if __name__ == "__main__": predict_with_v4_quantum('daily')