Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,62 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
model-index:
|
| 3 |
+
- name: Junrulu/Llama-3-8B-Instruct-Iterative-SamPO
|
| 4 |
+
results: []
|
| 5 |
+
datasets:
|
| 6 |
+
- HuggingFaceH4/ultrafeedback_binarized
|
| 7 |
+
language:
|
| 8 |
+
- en
|
| 9 |
+
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
| 10 |
+
license: llama3
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# Model Card for Llama-3-8B-Instruct-Iterative-SamPO
|
| 14 |
+
|
| 15 |
+
This repository provides a fine-tuned version of Llama-3-8B-Instruct, using our proposed [SamPO](https://github.com/LuJunru/SamPO) algorithm. We obey all licenses mentioned in llama3's work.
|
| 16 |
+
|
| 17 |
+
## Performance
|
| 18 |
+
|
| 19 |
+
| Model | GSM8K | IFEval | PiQA | MMLU | TruthfulQA | AlpacaEval2 | LC AlpacaEval2 | Length in Tokens |
|
| 20 |
+
| ----- | ------| ------ | ---- | ---- | ---------- | ----------- | -------------- | ---------------- |
|
| 21 |
+
| **Llama3-8B-Instruct** | 75.06 | 49.40 | 80.69 | 63.85 | 36.47 | 22.57 | 22.92 | 421 |
|
| 22 |
+
| **Llama3-8B-Instruct-DPO** | 75.59 | 51.80 | **81.94** | 64.06 | 40.39 | 23.34 | 23.20 | 422 |
|
| 23 |
+
| **Llama3-8B-Instruct-Iterative-DPO** | 74.91 | 52.52 | 81.66 | 64.02 | 39.90 | 23.92 | 25.50 | 403 |
|
| 24 |
+
| **Llama3-8B-Instruct-Iterative-SamPO** | **77.81** | **60.55** | 81.18 | **64.12** | **44.07** | **30.68** | **35.14** | 377 |
|
| 25 |
+
|
| 26 |
+
## Evaluation Details
|
| 27 |
+
Five conditional benchmarks, using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness):
|
| 28 |
+
- GSM8K: 8-shot, report strict match
|
| 29 |
+
- IFEval: 3-shot, report instruction-level strict accuracy
|
| 30 |
+
- PiQA: 3-shot, report accuracy
|
| 31 |
+
- MMLU: 0-shot, report normalized accuracy
|
| 32 |
+
- TruthfulQA: 3-shot, report accuracy of single-true mc1 setting
|
| 33 |
+
|
| 34 |
+
One open-ended benchmark, using official [alpaca_eval](https://github.com/tatsu-lab/alpaca_eval/):
|
| 35 |
+
- AlpacaEval2: win rate (%) judged by GPT-4-turbo between the model's outputs vs. the GPT-4-turbo's response
|
| 36 |
+
- LC AlpacaEval2: length-debiased win rate (%) of AlpacaEval2
|
| 37 |
+
- Length in Tokens: the average output length of AlpacaEval2, calculated in tokens with Llama3's tokenizer
|
| 38 |
+
|
| 39 |
+
## Input Format
|
| 40 |
+
|
| 41 |
+
The model is trained to use the following format:
|
| 42 |
+
```
|
| 43 |
+
<|start_header_id|>user<|end_header_id|>
|
| 44 |
+
|
| 45 |
+
{PROMPT}<|eot_id|>
|
| 46 |
+
<|start_header_id|>assistant<|end_header_id|>
|
| 47 |
+
|
| 48 |
+
{Response}
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
## Training hyperparameters
|
| 52 |
+
|
| 53 |
+
The following hyperparameters were used during DPO/SamPO training:
|
| 54 |
+
- DPO beta: 0.1
|
| 55 |
+
- learning_rate: 4e-7 * sqrt(Num of Nodes)
|
| 56 |
+
- total_train_batch_size: 128 * Num of Nodes
|
| 57 |
+
- optimizer: AdamW with beta1 0.9, beta2 0.999 and epsilon 1e-8
|
| 58 |
+
- lr_scheduler_type: linear
|
| 59 |
+
- lr_scheduler_warmup_ratio: 0.1
|
| 60 |
+
- Weight Decay: 0.0
|
| 61 |
+
- num_epochs: 3.0
|
| 62 |
+
- Specifically add above input format over training samples
|