File size: 92,033 Bytes
e44034c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "Basic Inferencing Code......."
      ],
      "metadata": {
        "id": "0oBfjDUPrLcP"
      }
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "gjcC3S4tOAQz",
        "outputId": "dab8a6f6-a9c3-443c-d712-d9b6314c4e68"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Mounted at /content/drive\n"
          ]
        }
      ],
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')\n"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "installing the llama cpp package(required for GGUF inferencing)\n"
      ],
      "metadata": {
        "id": "Yj2d_12m6MM1"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install llama-cpp-python"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "TNnbYg4YP_Kg",
        "outputId": "6c8fcbca-0eef-40de-fb80-c87e439e97d1"
      },
      "execution_count": 2,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Collecting llama-cpp-python\n",
            "  Downloading llama_cpp_python-0.3.8.tar.gz (67.3 MB)\n",
            "\u001b[2K     \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m67.3/67.3 MB\u001b[0m \u001b[31m13.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
            "  Installing backend dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "Requirement already satisfied: typing-extensions>=4.5.0 in /usr/local/lib/python3.11/dist-packages (from llama-cpp-python) (4.12.2)\n",
            "Requirement already satisfied: numpy>=1.20.0 in /usr/local/lib/python3.11/dist-packages (from llama-cpp-python) (2.0.2)\n",
            "Collecting diskcache>=5.6.1 (from llama-cpp-python)\n",
            "  Downloading diskcache-5.6.3-py3-none-any.whl.metadata (20 kB)\n",
            "Requirement already satisfied: jinja2>=2.11.3 in /usr/local/lib/python3.11/dist-packages (from llama-cpp-python) (3.1.6)\n",
            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2>=2.11.3->llama-cpp-python) (3.0.2)\n",
            "Downloading diskcache-5.6.3-py3-none-any.whl (45 kB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m45.5/45.5 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hBuilding wheels for collected packages: llama-cpp-python\n",
            "  Building wheel for llama-cpp-python (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for llama-cpp-python: filename=llama_cpp_python-0.3.8-cp311-cp311-linux_x86_64.whl size=5959614 sha256=4ce6f18bdb98c333c5e90158323e9fd50b4032f1f97973de95bf0796fec1d726\n",
            "  Stored in directory: /root/.cache/pip/wheels/c0/03/66/eb3810eafd55d921b2be32896d1f44313996982360663aa80b\n",
            "Successfully built llama-cpp-python\n",
            "Installing collected packages: diskcache, llama-cpp-python\n",
            "Successfully installed diskcache-5.6.3 llama-cpp-python-0.3.8\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_cpp import Llama\n",
        "import random\n",
        "\n",
        "# Load the model with a system message\n",
        "model_path = \"/content/drive/MyDrive/Dating_LLM_GGUF/damn.gguf\"\n",
        "llm = Llama(\n",
        "    model_path=model_path,\n",
        "    n_gpu_layers=40,\n",
        "    n_ctx=2048,\n",
        "    system_message=\"You are an unfiltered, informal AI assistant. You can use slang, jokes, vulgar words, and a humorous tone when answering. Always add emojis and sound like a real friend talking casually.\"\n",
        ")\n",
        "\n",
        "# Function to determine gender-based greeting\n",
        "def get_salutation(user_input):\n",
        "    male_keywords = [\"girlfriend\", \"wife\", \"she\", \"her\"]\n",
        "    female_keywords = [\"boyfriend\", \"husband\", \"he\", \"him\"]\n",
        "\n",
        "    if any(word in user_input.lower() for word in male_keywords):\n",
        "        return random.choice([\"Hey queen! ๐Ÿ‘‘\", \"Girl, listen up! ๐Ÿ’…\", \"Sis, letโ€™s talk โค๏ธ\"])\n",
        "    elif any(word in user_input.lower() for word in female_keywords):\n",
        "        return random.choice([\"Yo bro! ๐Ÿ”ฅ\", \"Dude, hear me out ๐Ÿค”\", \"Man, let's fix this ๐Ÿ’ช\"])\n",
        "    else:\n",
        "        return random.choice([\"Yo dude! ๐Ÿ˜Ž\", \"Hey buddy! ๐Ÿ™Œ\", \"Listen up, my friend โค๏ธ\"])\n",
        "\n",
        "# Function to modify user prompt\n",
        "def make_emotional(user_input):\n",
        "    salutation = get_salutation(user_input)\n",
        "    suffix = \" Give me some real, no-BS advice with emojis! ๐Ÿ˜‚๐Ÿ”ฅ๐Ÿ’–\"\n",
        "\n",
        "    return f\"{salutation} {user_input} {suffix}\"\n",
        "\n",
        "# User input (simulate user typing a normal question)\n",
        "user_input = \"My partner doesn't like my friends. What should I do?\"\n",
        "\n",
        "# Modify the input before passing to the model\n",
        "emotional_prompt = make_emotional(user_input)\n",
        "\n",
        "# Run inference with modified prompt\n",
        "output = llm(emotional_prompt, max_tokens=200)\n",
        "\n",
        "# Print the output\n",
        "print(output[\"choices\"][0][\"text\"])\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "IJaKWdZUP8hX",
        "outputId": "ab206dec-2fb9-4661-e0cb-13956ac98003"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "llama_model_loader: loaded meta data with 24 key-value pairs and 434 tensors from /content/drive/MyDrive/Dating_LLM_GGUF/damn.gguf (version GGUF V3 (latest))\n",
            "llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n",
            "llama_model_loader: - kv   0:                       general.architecture str              = qwen2\n",
            "llama_model_loader: - kv   1:                               general.type str              = model\n",
            "llama_model_loader: - kv   2:                               general.name str              = Merged\n",
            "llama_model_loader: - kv   3:                         general.size_label str              = 3.1B\n",
            "llama_model_loader: - kv   4:                          qwen2.block_count u32              = 36\n",
            "llama_model_loader: - kv   5:                       qwen2.context_length u32              = 32768\n",
            "llama_model_loader: - kv   6:                     qwen2.embedding_length u32              = 2048\n",
            "llama_model_loader: - kv   7:                  qwen2.feed_forward_length u32              = 11008\n",
            "llama_model_loader: - kv   8:                 qwen2.attention.head_count u32              = 16\n",
            "llama_model_loader: - kv   9:              qwen2.attention.head_count_kv u32              = 2\n",
            "llama_model_loader: - kv  10:                       qwen2.rope.freq_base f32              = 1000000.000000\n",
            "llama_model_loader: - kv  11:     qwen2.attention.layer_norm_rms_epsilon f32              = 0.000001\n",
            "llama_model_loader: - kv  12:                          general.file_type u32              = 1\n",
            "llama_model_loader: - kv  13:                       tokenizer.ggml.model str              = gpt2\n",
            "llama_model_loader: - kv  14:                         tokenizer.ggml.pre str              = qwen2\n",
            "llama_model_loader: - kv  15:                      tokenizer.ggml.tokens arr[str,151936]  = [\"!\", \"\\\"\", \"#\", \"$\", \"%\", \"&\", \"'\", ...\n",
            "llama_model_loader: - kv  16:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...\n",
            "llama_model_loader: - kv  17:                      tokenizer.ggml.merges arr[str,151387]  = [\"ฤ  ฤ \", \"ฤ ฤ  ฤ ฤ \", \"i n\", \"ฤ  t\",...\n",
            "llama_model_loader: - kv  18:                tokenizer.ggml.eos_token_id u32              = 151645\n",
            "llama_model_loader: - kv  19:            tokenizer.ggml.padding_token_id u32              = 151643\n",
            "llama_model_loader: - kv  20:                tokenizer.ggml.bos_token_id u32              = 151643\n",
            "llama_model_loader: - kv  21:               tokenizer.ggml.add_bos_token bool             = false\n",
            "llama_model_loader: - kv  22:                    tokenizer.chat_template str              = {%- if tools %}\\n    {{- '<|im_start|>...\n",
            "llama_model_loader: - kv  23:               general.quantization_version u32              = 2\n",
            "llama_model_loader: - type  f32:  181 tensors\n",
            "llama_model_loader: - type  f16:  253 tensors\n",
            "print_info: file format = GGUF V3 (latest)\n",
            "print_info: file type   = F16\n",
            "print_info: file size   = 5.75 GiB (16.00 BPW) \n",
            "init_tokenizer: initializing tokenizer for type 2\n",
            "load: control token: 151660 '<|fim_middle|>' is not marked as EOG\n",
            "load: control token: 151659 '<|fim_prefix|>' is not marked as EOG\n",
            "load: control token: 151653 '<|vision_end|>' is not marked as EOG\n",
            "load: control token: 151648 '<|box_start|>' is not marked as EOG\n",
            "load: control token: 151646 '<|object_ref_start|>' is not marked as EOG\n",
            "load: control token: 151649 '<|box_end|>' is not marked as EOG\n",
            "load: control token: 151655 '<|image_pad|>' is not marked as EOG\n",
            "load: control token: 151651 '<|quad_end|>' is not marked as EOG\n",
            "load: control token: 151647 '<|object_ref_end|>' is not marked as EOG\n",
            "load: control token: 151652 '<|vision_start|>' is not marked as EOG\n",
            "load: control token: 151654 '<|vision_pad|>' is not marked as EOG\n",
            "load: control token: 151656 '<|video_pad|>' is not marked as EOG\n",
            "load: control token: 151644 '<|im_start|>' is not marked as EOG\n",
            "load: control token: 151661 '<|fim_suffix|>' is not marked as EOG\n",
            "load: control token: 151650 '<|quad_start|>' is not marked as EOG\n",
            "load: special tokens cache size = 22\n",
            "load: token to piece cache size = 0.9310 MB\n",
            "print_info: arch             = qwen2\n",
            "print_info: vocab_only       = 0\n",
            "print_info: n_ctx_train      = 32768\n",
            "print_info: n_embd           = 2048\n",
            "print_info: n_layer          = 36\n",
            "print_info: n_head           = 16\n",
            "print_info: n_head_kv        = 2\n",
            "print_info: n_rot            = 128\n",
            "print_info: n_swa            = 0\n",
            "print_info: n_embd_head_k    = 128\n",
            "print_info: n_embd_head_v    = 128\n",
            "print_info: n_gqa            = 8\n",
            "print_info: n_embd_k_gqa     = 256\n",
            "print_info: n_embd_v_gqa     = 256\n",
            "print_info: f_norm_eps       = 0.0e+00\n",
            "print_info: f_norm_rms_eps   = 1.0e-06\n",
            "print_info: f_clamp_kqv      = 0.0e+00\n",
            "print_info: f_max_alibi_bias = 0.0e+00\n",
            "print_info: f_logit_scale    = 0.0e+00\n",
            "print_info: f_attn_scale     = 0.0e+00\n",
            "print_info: n_ff             = 11008\n",
            "print_info: n_expert         = 0\n",
            "print_info: n_expert_used    = 0\n",
            "print_info: causal attn      = 1\n",
            "print_info: pooling type     = 0\n",
            "print_info: rope type        = 2\n",
            "print_info: rope scaling     = linear\n",
            "print_info: freq_base_train  = 1000000.0\n",
            "print_info: freq_scale_train = 1\n",
            "print_info: n_ctx_orig_yarn  = 32768\n",
            "print_info: rope_finetuned   = unknown\n",
            "print_info: ssm_d_conv       = 0\n",
            "print_info: ssm_d_inner      = 0\n",
            "print_info: ssm_d_state      = 0\n",
            "print_info: ssm_dt_rank      = 0\n",
            "print_info: ssm_dt_b_c_rms   = 0\n",
            "print_info: model type       = 3B\n",
            "print_info: model params     = 3.09 B\n",
            "print_info: general.name     = Merged\n",
            "print_info: vocab type       = BPE\n",
            "print_info: n_vocab          = 151936\n",
            "print_info: n_merges         = 151387\n",
            "print_info: BOS token        = 151643 '<|endoftext|>'\n",
            "print_info: EOS token        = 151645 '<|im_end|>'\n",
            "print_info: EOT token        = 151645 '<|im_end|>'\n",
            "print_info: PAD token        = 151643 '<|endoftext|>'\n",
            "print_info: LF token         = 198 'ฤŠ'\n",
            "print_info: FIM PRE token    = 151659 '<|fim_prefix|>'\n",
            "print_info: FIM SUF token    = 151661 '<|fim_suffix|>'\n",
            "print_info: FIM MID token    = 151660 '<|fim_middle|>'\n",
            "print_info: FIM PAD token    = 151662 '<|fim_pad|>'\n",
            "print_info: FIM REP token    = 151663 '<|repo_name|>'\n",
            "print_info: FIM SEP token    = 151664 '<|file_sep|>'\n",
            "print_info: EOG token        = 151643 '<|endoftext|>'\n",
            "print_info: EOG token        = 151645 '<|im_end|>'\n",
            "print_info: EOG token        = 151662 '<|fim_pad|>'\n",
            "print_info: EOG token        = 151663 '<|repo_name|>'\n",
            "print_info: EOG token        = 151664 '<|file_sep|>'\n",
            "print_info: max token length = 256\n",
            "load_tensors: loading model tensors, this can take a while... (mmap = true)\n",
            "load_tensors: layer   0 assigned to device CPU\n",
            "load_tensors: layer   1 assigned to device CPU\n",
            "load_tensors: layer   2 assigned to device CPU\n",
            "load_tensors: layer   3 assigned to device CPU\n",
            "load_tensors: layer   4 assigned to device CPU\n",
            "load_tensors: layer   5 assigned to device CPU\n",
            "load_tensors: layer   6 assigned to device CPU\n",
            "load_tensors: layer   7 assigned to device CPU\n",
            "load_tensors: layer   8 assigned to device CPU\n",
            "load_tensors: layer   9 assigned to device CPU\n",
            "load_tensors: layer  10 assigned to device CPU\n",
            "load_tensors: layer  11 assigned to device CPU\n",
            "load_tensors: layer  12 assigned to device CPU\n",
            "load_tensors: layer  13 assigned to device CPU\n",
            "load_tensors: layer  14 assigned to device CPU\n",
            "load_tensors: layer  15 assigned to device CPU\n",
            "load_tensors: layer  16 assigned to device CPU\n",
            "load_tensors: layer  17 assigned to device CPU\n",
            "load_tensors: layer  18 assigned to device CPU\n",
            "load_tensors: layer  19 assigned to device CPU\n",
            "load_tensors: layer  20 assigned to device CPU\n",
            "load_tensors: layer  21 assigned to device CPU\n",
            "load_tensors: layer  22 assigned to device CPU\n",
            "load_tensors: layer  23 assigned to device CPU\n",
            "load_tensors: layer  24 assigned to device CPU\n",
            "load_tensors: layer  25 assigned to device CPU\n",
            "load_tensors: layer  26 assigned to device CPU\n",
            "load_tensors: layer  27 assigned to device CPU\n",
            "load_tensors: layer  28 assigned to device CPU\n",
            "load_tensors: layer  29 assigned to device CPU\n",
            "load_tensors: layer  30 assigned to device CPU\n",
            "load_tensors: layer  31 assigned to device CPU\n",
            "load_tensors: layer  32 assigned to device CPU\n",
            "load_tensors: layer  33 assigned to device CPU\n",
            "load_tensors: layer  34 assigned to device CPU\n",
            "load_tensors: layer  35 assigned to device CPU\n",
            "load_tensors: layer  36 assigned to device CPU\n",
            "load_tensors: tensor 'token_embd.weight' (f16) (and 434 others) cannot be used with preferred buffer type CPU_AARCH64, using CPU instead\n",
            "load_tensors:   CPU_Mapped model buffer size =  5886.42 MiB\n",
            "...........................................................................................\n",
            "llama_init_from_model: n_seq_max     = 1\n",
            "llama_init_from_model: n_ctx         = 2048\n",
            "llama_init_from_model: n_ctx_per_seq = 2048\n",
            "llama_init_from_model: n_batch       = 512\n",
            "llama_init_from_model: n_ubatch      = 512\n",
            "llama_init_from_model: flash_attn    = 0\n",
            "llama_init_from_model: freq_base     = 1000000.0\n",
            "llama_init_from_model: freq_scale    = 1\n",
            "llama_init_from_model: n_ctx_per_seq (2048) < n_ctx_train (32768) -- the full capacity of the model will not be utilized\n",
            "llama_kv_cache_init: kv_size = 2048, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 36, can_shift = 1\n",
            "llama_kv_cache_init: layer 0: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 1: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 2: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 3: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 4: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 5: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 6: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 7: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 8: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 9: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 10: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 11: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 12: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 13: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 14: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 15: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 16: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 17: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 18: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 19: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 20: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 21: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 22: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 23: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 24: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 25: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 26: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 27: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 28: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 29: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 30: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 31: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 32: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 33: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 34: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 35: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init:        CPU KV buffer size =    72.00 MiB\n",
            "llama_init_from_model: KV self size  =   72.00 MiB, K (f16):   36.00 MiB, V (f16):   36.00 MiB\n",
            "llama_init_from_model:        CPU  output buffer size =     0.58 MiB\n",
            "llama_init_from_model:        CPU compute buffer size =   300.75 MiB\n",
            "llama_init_from_model: graph nodes  = 1266\n",
            "llama_init_from_model: graph splits = 1\n",
            "CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | \n",
            "Model metadata: {'tokenizer.ggml.add_bos_token': 'false', 'tokenizer.ggml.bos_token_id': '151643', 'general.architecture': 'qwen2', 'tokenizer.ggml.padding_token_id': '151643', 'qwen2.embedding_length': '2048', 'tokenizer.ggml.pre': 'qwen2', 'general.name': 'Merged', 'qwen2.block_count': '36', 'general.type': 'model', 'general.size_label': '3.1B', 'qwen2.context_length': '32768', 'tokenizer.chat_template': '{%- if tools %}\\n    {{- \\'<|im_start|>system\\\\n\\' }}\\n    {%- if messages[0][\\'role\\'] == \\'system\\' %}\\n        {{- messages[0][\\'content\\'] }}\\n    {%- else %}\\n        {{- \\'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.\\' }}\\n    {%- endif %}\\n    {{- \"\\\\n\\\\n# Tools\\\\n\\\\nYou may call one or more functions to assist with the user query.\\\\n\\\\nYou are provided with function signatures within <tools></tools> XML tags:\\\\n<tools>\" }}\\n    {%- for tool in tools %}\\n        {{- \"\\\\n\" }}\\n        {{- tool | tojson }}\\n    {%- endfor %}\\n    {{- \"\\\\n</tools>\\\\n\\\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\\\n<tool_call>\\\\n{\\\\\"name\\\\\": <function-name>, \\\\\"arguments\\\\\": <args-json-object>}\\\\n</tool_call><|im_end|>\\\\n\" }}\\n{%- else %}\\n    {%- if messages[0][\\'role\\'] == \\'system\\' %}\\n        {{- \\'<|im_start|>system\\\\n\\' + messages[0][\\'content\\'] + \\'<|im_end|>\\\\n\\' }}\\n    {%- else %}\\n        {{- \\'<|im_start|>system\\\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\\\n\\' }}\\n    {%- endif %}\\n{%- endif %}\\n{%- for message in messages %}\\n    {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\\n        {{- \\'<|im_start|>\\' + message.role + \\'\\\\n\\' + message.content + \\'<|im_end|>\\' + \\'\\\\n\\' }}\\n    {%- elif message.role == \"assistant\" %}\\n        {{- \\'<|im_start|>\\' + message.role }}\\n        {%- if message.content %}\\n            {{- \\'\\\\n\\' + message.content }}\\n        {%- endif %}\\n        {%- for tool_call in message.tool_calls %}\\n            {%- if tool_call.function is defined %}\\n                {%- set tool_call = tool_call.function %}\\n            {%- endif %}\\n            {{- \\'\\\\n<tool_call>\\\\n{\"name\": \"\\' }}\\n            {{- tool_call.name }}\\n            {{- \\'\", \"arguments\": \\' }}\\n            {{- tool_call.arguments | tojson }}\\n            {{- \\'}\\\\n</tool_call>\\' }}\\n        {%- endfor %}\\n        {{- \\'<|im_end|>\\\\n\\' }}\\n    {%- elif message.role == \"tool\" %}\\n        {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\\n            {{- \\'<|im_start|>user\\' }}\\n        {%- endif %}\\n        {{- \\'\\\\n<tool_response>\\\\n\\' }}\\n        {{- message.content }}\\n        {{- \\'\\\\n</tool_response>\\' }}\\n        {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\\n            {{- \\'<|im_end|>\\\\n\\' }}\\n        {%- endif %}\\n    {%- endif %}\\n{%- endfor %}\\n{%- if add_generation_prompt %}\\n    {{- \\'<|im_start|>assistant\\\\n\\' }}\\n{%- endif %}\\n', 'qwen2.attention.head_count_kv': '2', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'gpt2', 'qwen2.feed_forward_length': '11008', 'qwen2.attention.layer_norm_rms_epsilon': '0.000001', 'qwen2.attention.head_count': '16', 'tokenizer.ggml.eos_token_id': '151645', 'qwen2.rope.freq_base': '1000000.000000', 'general.file_type': '1'}\n",
            "Available chat formats from metadata: chat_template.default\n",
            "Using gguf chat template: {%- if tools %}\n",
            "    {{- '<|im_start|>system\\n' }}\n",
            "    {%- if messages[0]['role'] == 'system' %}\n",
            "        {{- messages[0]['content'] }}\n",
            "    {%- else %}\n",
            "        {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n",
            "    {%- endif %}\n",
            "    {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n",
            "    {%- for tool in tools %}\n",
            "        {{- \"\\n\" }}\n",
            "        {{- tool | tojson }}\n",
            "    {%- endfor %}\n",
            "    {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n",
            "{%- else %}\n",
            "    {%- if messages[0]['role'] == 'system' %}\n",
            "        {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n",
            "    {%- else %}\n",
            "        {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n",
            "    {%- endif %}\n",
            "{%- endif %}\n",
            "{%- for message in messages %}\n",
            "    {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n",
            "        {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n",
            "    {%- elif message.role == \"assistant\" %}\n",
            "        {{- '<|im_start|>' + message.role }}\n",
            "        {%- if message.content %}\n",
            "            {{- '\\n' + message.content }}\n",
            "        {%- endif %}\n",
            "        {%- for tool_call in message.tool_calls %}\n",
            "            {%- if tool_call.function is defined %}\n",
            "                {%- set tool_call = tool_call.function %}\n",
            "            {%- endif %}\n",
            "            {{- '\\n<tool_call>\\n{\"name\": \"' }}\n",
            "            {{- tool_call.name }}\n",
            "            {{- '\", \"arguments\": ' }}\n",
            "            {{- tool_call.arguments | tojson }}\n",
            "            {{- '}\\n</tool_call>' }}\n",
            "        {%- endfor %}\n",
            "        {{- '<|im_end|>\\n' }}\n",
            "    {%- elif message.role == \"tool\" %}\n",
            "        {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n",
            "            {{- '<|im_start|>user' }}\n",
            "        {%- endif %}\n",
            "        {{- '\\n<tool_response>\\n' }}\n",
            "        {{- message.content }}\n",
            "        {{- '\\n</tool_response>' }}\n",
            "        {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n",
            "            {{- '<|im_end|>\\n' }}\n",
            "        {%- endif %}\n",
            "    {%- endif %}\n",
            "{%- endfor %}\n",
            "{%- if add_generation_prompt %}\n",
            "    {{- '<|im_start|>assistant\\n' }}\n",
            "{%- endif %}\n",
            "\n",
            "Using chat eos_token: <|im_end|>\n",
            "Using chat bos_token: <|endoftext|>\n",
            "llama_perf_context_print:        load time =    8854.20 ms\n",
            "llama_perf_context_print: prompt eval time =    8853.89 ms /    35 tokens (  252.97 ms per token,     3.95 tokens per second)\n",
            "llama_perf_context_print:        eval time =  166968.46 ms /   199 runs   (  839.04 ms per token,     1.19 tokens per second)\n",
            "llama_perf_context_print:       total time =  176246.10 ms /   234 tokens\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "โœจ\n",
            "\n",
            "Hey there! ๐ŸŽ‰ First off, it's great that you're looking for real, no-BS advice! ๐Ÿค” Hereโ€™s a straightforward approach:\n",
            "\n",
            "1. **Talk to Her**: ๐ŸŒŸ Find a time when sheโ€™s calm and willing to talk. ๐Ÿ™ƒ Be honest but gentle. ๐Ÿ“œ Explain your feelings and the importance of your friendship. ๐ŸŒŸ\n",
            "\n",
            "2. **Ask for Her Perspective**: ๐Ÿ‘€ Listen to her and understand her point of view. ๐Ÿ“ Ask questions to clarify her feelings. ๐ŸŒž\n",
            "\n",
            "3. **Compromise**: ๐ŸŽฏ Propose a solution that works for both of you. ๐Ÿ’ผ Maybe keep some distance from her or find a neutral ground. ๐ŸŽค\n",
            "\n",
            "4. **Support Each Other**: ๐Ÿ’– Let her know youโ€™re supportive of her and encourage her to talk to her friends as well. ๐ŸŒฟ\n",
            "\n",
            "Remember, communication is key! ๐ŸŒŸ\n",
            "\n",
            "Hope this helps!\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "Install required packages."
      ],
      "metadata": {
        "id": "6pkmpO417oI3"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install praw faiss-cpu fitz numpy sentence-transformers\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Afdc0y43aVoc",
        "outputId": "62e40c44-8b26-4ccb-a2d7-38468e4dfa6f"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Collecting praw\n",
            "  Downloading praw-7.8.1-py3-none-any.whl.metadata (9.4 kB)\n",
            "Collecting faiss-cpu\n",
            "  Downloading faiss_cpu-1.10.0-cp311-cp311-manylinux_2_28_x86_64.whl.metadata (4.4 kB)\n",
            "Collecting fitz\n",
            "  Downloading fitz-0.0.1.dev2-py2.py3-none-any.whl.metadata (816 bytes)\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (2.0.2)\n",
            "Requirement already satisfied: sentence-transformers in /usr/local/lib/python3.11/dist-packages (3.4.1)\n",
            "Collecting prawcore<3,>=2.4 (from praw)\n",
            "  Downloading prawcore-2.4.0-py3-none-any.whl.metadata (5.0 kB)\n",
            "Collecting update_checker>=0.18 (from praw)\n",
            "  Downloading update_checker-0.18.0-py3-none-any.whl.metadata (2.3 kB)\n",
            "Requirement already satisfied: websocket-client>=0.54.0 in /usr/local/lib/python3.11/dist-packages (from praw) (1.8.0)\n",
            "Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from faiss-cpu) (24.2)\n",
            "Collecting configobj (from fitz)\n",
            "  Downloading configobj-5.0.9-py2.py3-none-any.whl.metadata (3.2 kB)\n",
            "Collecting configparser (from fitz)\n",
            "  Downloading configparser-7.2.0-py3-none-any.whl.metadata (5.5 kB)\n",
            "Requirement already satisfied: httplib2 in /usr/local/lib/python3.11/dist-packages (from fitz) (0.22.0)\n",
            "Requirement already satisfied: nibabel in /usr/local/lib/python3.11/dist-packages (from fitz) (5.3.2)\n",
            "Collecting nipype (from fitz)\n",
            "  Downloading nipype-1.10.0-py3-none-any.whl.metadata (7.1 kB)\n",
            "Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from fitz) (2.2.2)\n",
            "Collecting pyxnat (from fitz)\n",
            "  Downloading pyxnat-1.6.3-py3-none-any.whl.metadata (5.4 kB)\n",
            "Requirement already satisfied: scipy in /usr/local/lib/python3.11/dist-packages (from fitz) (1.14.1)\n",
            "Requirement already satisfied: transformers<5.0.0,>=4.41.0 in /usr/local/lib/python3.11/dist-packages (from sentence-transformers) (4.50.0)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (from sentence-transformers) (4.67.1)\n",
            "Requirement already satisfied: torch>=1.11.0 in /usr/local/lib/python3.11/dist-packages (from sentence-transformers) (2.6.0+cu124)\n",
            "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.11/dist-packages (from sentence-transformers) (1.6.1)\n",
            "Requirement already satisfied: huggingface-hub>=0.20.0 in /usr/local/lib/python3.11/dist-packages (from sentence-transformers) (0.29.3)\n",
            "Requirement already satisfied: Pillow in /usr/local/lib/python3.11/dist-packages (from sentence-transformers) (11.1.0)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.20.0->sentence-transformers) (3.18.0)\n",
            "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.20.0->sentence-transformers) (2025.3.0)\n",
            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.20.0->sentence-transformers) (6.0.2)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.20.0->sentence-transformers) (2.32.3)\n",
            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.20.0->sentence-transformers) (4.12.2)\n",
            "Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (3.4.2)\n",
            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (3.1.6)\n",
            "Collecting nvidia-cuda-nvrtc-cu12==12.4.127 (from torch>=1.11.0->sentence-transformers)\n",
            "  Downloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
            "Collecting nvidia-cuda-runtime-cu12==12.4.127 (from torch>=1.11.0->sentence-transformers)\n",
            "  Downloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
            "Collecting nvidia-cuda-cupti-cu12==12.4.127 (from torch>=1.11.0->sentence-transformers)\n",
            "  Downloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
            "Collecting nvidia-cudnn-cu12==9.1.0.70 (from torch>=1.11.0->sentence-transformers)\n",
            "  Downloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
            "Collecting nvidia-cublas-cu12==12.4.5.8 (from torch>=1.11.0->sentence-transformers)\n",
            "  Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
            "Collecting nvidia-cufft-cu12==11.2.1.3 (from torch>=1.11.0->sentence-transformers)\n",
            "  Downloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
            "Collecting nvidia-curand-cu12==10.3.5.147 (from torch>=1.11.0->sentence-transformers)\n",
            "  Downloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
            "Collecting nvidia-cusolver-cu12==11.6.1.9 (from torch>=1.11.0->sentence-transformers)\n",
            "  Downloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
            "Collecting nvidia-cusparse-cu12==12.3.1.170 (from torch>=1.11.0->sentence-transformers)\n",
            "  Downloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
            "Requirement already satisfied: nvidia-cusparselt-cu12==0.6.2 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (0.6.2)\n",
            "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (2.21.5)\n",
            "Requirement already satisfied: nvidia-nvtx-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (12.4.127)\n",
            "Collecting nvidia-nvjitlink-cu12==12.4.127 (from torch>=1.11.0->sentence-transformers)\n",
            "  Downloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
            "Requirement already satisfied: triton==3.2.0 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (3.2.0)\n",
            "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (1.13.1)\n",
            "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch>=1.11.0->sentence-transformers) (1.3.0)\n",
            "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.11/dist-packages (from transformers<5.0.0,>=4.41.0->sentence-transformers) (2024.11.6)\n",
            "Requirement already satisfied: tokenizers<0.22,>=0.21 in /usr/local/lib/python3.11/dist-packages (from transformers<5.0.0,>=4.41.0->sentence-transformers) (0.21.1)\n",
            "Requirement already satisfied: safetensors>=0.4.3 in /usr/local/lib/python3.11/dist-packages (from transformers<5.0.0,>=4.41.0->sentence-transformers) (0.5.3)\n",
            "Requirement already satisfied: pyparsing!=3.0.0,!=3.0.1,!=3.0.2,!=3.0.3,<4,>=2.4.2 in /usr/local/lib/python3.11/dist-packages (from httplib2->fitz) (3.2.1)\n",
            "Requirement already satisfied: importlib-resources>=5.12 in /usr/local/lib/python3.11/dist-packages (from nibabel->fitz) (6.5.2)\n",
            "Requirement already satisfied: click>=6.6.0 in /usr/local/lib/python3.11/dist-packages (from nipype->fitz) (8.1.8)\n",
            "Collecting prov>=1.5.2 (from nipype->fitz)\n",
            "  Downloading prov-2.0.1-py3-none-any.whl.metadata (3.6 kB)\n",
            "Requirement already satisfied: pydot>=1.2.3 in /usr/local/lib/python3.11/dist-packages (from nipype->fitz) (3.0.4)\n",
            "Requirement already satisfied: python-dateutil>=2.2 in /usr/local/lib/python3.11/dist-packages (from nipype->fitz) (2.8.2)\n",
            "Collecting rdflib>=5.0.0 (from nipype->fitz)\n",
            "  Downloading rdflib-7.1.4-py3-none-any.whl.metadata (11 kB)\n",
            "Requirement already satisfied: simplejson>=3.8.0 in /usr/local/lib/python3.11/dist-packages (from nipype->fitz) (3.20.1)\n",
            "Collecting traits>=6.2 (from nipype->fitz)\n",
            "  Downloading traits-7.0.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.8 kB)\n",
            "Collecting acres (from nipype->fitz)\n",
            "  Downloading acres-0.3.0-py3-none-any.whl.metadata (5.5 kB)\n",
            "Collecting etelemetry>=0.3.1 (from nipype->fitz)\n",
            "  Downloading etelemetry-0.3.1-py3-none-any.whl.metadata (3.2 kB)\n",
            "Collecting looseversion!=1.2 (from nipype->fitz)\n",
            "  Downloading looseversion-1.3.0-py2.py3-none-any.whl.metadata (4.6 kB)\n",
            "Collecting puremagic (from nipype->fitz)\n",
            "  Downloading puremagic-1.28-py3-none-any.whl.metadata (5.8 kB)\n",
            "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas->fitz) (2025.1)\n",
            "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->fitz) (2025.1)\n",
            "Requirement already satisfied: lxml>=4.3 in /usr/local/lib/python3.11/dist-packages (from pyxnat->fitz) (5.3.1)\n",
            "Requirement already satisfied: pathlib>=1.0 in /usr/local/lib/python3.11/dist-packages (from pyxnat->fitz) (1.0.1)\n",
            "Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn->sentence-transformers) (1.4.2)\n",
            "Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn->sentence-transformers) (3.6.0)\n",
            "Collecting ci-info>=0.2 (from etelemetry>=0.3.1->nipype->fitz)\n",
            "  Downloading ci_info-0.3.0-py3-none-any.whl.metadata (6.1 kB)\n",
            "Collecting rdflib>=5.0.0 (from nipype->fitz)\n",
            "  Downloading rdflib-6.3.2-py3-none-any.whl.metadata (11 kB)\n",
            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.2->nipype->fitz) (1.17.0)\n",
            "Collecting isodate<0.7.0,>=0.6.0 (from rdflib>=5.0.0->nipype->fitz)\n",
            "  Downloading isodate-0.6.1-py2.py3-none-any.whl.metadata (9.6 kB)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->huggingface-hub>=0.20.0->sentence-transformers) (3.4.1)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests->huggingface-hub>=0.20.0->sentence-transformers) (3.10)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests->huggingface-hub>=0.20.0->sentence-transformers) (2.3.0)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests->huggingface-hub>=0.20.0->sentence-transformers) (2025.1.31)\n",
            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch>=1.11.0->sentence-transformers) (3.0.2)\n",
            "Downloading praw-7.8.1-py3-none-any.whl (189 kB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m189.3/189.3 kB\u001b[0m \u001b[31m3.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading faiss_cpu-1.10.0-cp311-cp311-manylinux_2_28_x86_64.whl (30.7 MB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m30.7/30.7 MB\u001b[0m \u001b[31m41.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading fitz-0.0.1.dev2-py2.py3-none-any.whl (20 kB)\n",
            "Downloading prawcore-2.4.0-py3-none-any.whl (17 kB)\n",
            "Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl (363.4 MB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m3.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (13.8 MB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m91.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (24.6 MB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m26.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (883 kB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m41.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl (664.8 MB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m2.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl (211.5 MB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl (56.3 MB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m10.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl (127.9 MB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m7.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl (207.5 MB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m8.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m43.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading update_checker-0.18.0-py3-none-any.whl (7.0 kB)\n",
            "Downloading configobj-5.0.9-py2.py3-none-any.whl (35 kB)\n",
            "Downloading configparser-7.2.0-py3-none-any.whl (17 kB)\n",
            "Downloading nipype-1.10.0-py3-none-any.whl (3.2 MB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m3.2/3.2 MB\u001b[0m \u001b[31m65.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading pyxnat-1.6.3-py3-none-any.whl (95 kB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m95.4/95.4 kB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading etelemetry-0.3.1-py3-none-any.whl (6.4 kB)\n",
            "Downloading looseversion-1.3.0-py2.py3-none-any.whl (8.2 kB)\n",
            "Downloading prov-2.0.1-py3-none-any.whl (421 kB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m421.5/421.5 kB\u001b[0m \u001b[31m26.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading rdflib-6.3.2-py3-none-any.whl (528 kB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m528.1/528.1 kB\u001b[0m \u001b[31m32.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading traits-7.0.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m5.1/5.1 MB\u001b[0m \u001b[31m76.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading acres-0.3.0-py3-none-any.whl (10 kB)\n",
            "Downloading puremagic-1.28-py3-none-any.whl (43 kB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m43.2/43.2 kB\u001b[0m \u001b[31m3.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading ci_info-0.3.0-py3-none-any.whl (7.8 kB)\n",
            "Downloading isodate-0.6.1-py2.py3-none-any.whl (41 kB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m41.7/41.7 kB\u001b[0m \u001b[31m2.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hInstalling collected packages: puremagic, looseversion, traits, nvidia-nvjitlink-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, isodate, faiss-cpu, configparser, configobj, ci-info, acres, update_checker, rdflib, pyxnat, prawcore, nvidia-cusparse-cu12, nvidia-cudnn-cu12, etelemetry, prov, praw, nvidia-cusolver-cu12, nipype, fitz\n",
            "  Attempting uninstall: nvidia-nvjitlink-cu12\n",
            "    Found existing installation: nvidia-nvjitlink-cu12 12.5.82\n",
            "    Uninstalling nvidia-nvjitlink-cu12-12.5.82:\n",
            "      Successfully uninstalled nvidia-nvjitlink-cu12-12.5.82\n",
            "  Attempting uninstall: nvidia-curand-cu12\n",
            "    Found existing installation: nvidia-curand-cu12 10.3.6.82\n",
            "    Uninstalling nvidia-curand-cu12-10.3.6.82:\n",
            "      Successfully uninstalled nvidia-curand-cu12-10.3.6.82\n",
            "  Attempting uninstall: nvidia-cufft-cu12\n",
            "    Found existing installation: nvidia-cufft-cu12 11.2.3.61\n",
            "    Uninstalling nvidia-cufft-cu12-11.2.3.61:\n",
            "      Successfully uninstalled nvidia-cufft-cu12-11.2.3.61\n",
            "  Attempting uninstall: nvidia-cuda-runtime-cu12\n",
            "    Found existing installation: nvidia-cuda-runtime-cu12 12.5.82\n",
            "    Uninstalling nvidia-cuda-runtime-cu12-12.5.82:\n",
            "      Successfully uninstalled nvidia-cuda-runtime-cu12-12.5.82\n",
            "  Attempting uninstall: nvidia-cuda-nvrtc-cu12\n",
            "    Found existing installation: nvidia-cuda-nvrtc-cu12 12.5.82\n",
            "    Uninstalling nvidia-cuda-nvrtc-cu12-12.5.82:\n",
            "      Successfully uninstalled nvidia-cuda-nvrtc-cu12-12.5.82\n",
            "  Attempting uninstall: nvidia-cuda-cupti-cu12\n",
            "    Found existing installation: nvidia-cuda-cupti-cu12 12.5.82\n",
            "    Uninstalling nvidia-cuda-cupti-cu12-12.5.82:\n",
            "      Successfully uninstalled nvidia-cuda-cupti-cu12-12.5.82\n",
            "  Attempting uninstall: nvidia-cublas-cu12\n",
            "    Found existing installation: nvidia-cublas-cu12 12.5.3.2\n",
            "    Uninstalling nvidia-cublas-cu12-12.5.3.2:\n",
            "      Successfully uninstalled nvidia-cublas-cu12-12.5.3.2\n",
            "  Attempting uninstall: nvidia-cusparse-cu12\n",
            "    Found existing installation: nvidia-cusparse-cu12 12.5.1.3\n",
            "    Uninstalling nvidia-cusparse-cu12-12.5.1.3:\n",
            "      Successfully uninstalled nvidia-cusparse-cu12-12.5.1.3\n",
            "  Attempting uninstall: nvidia-cudnn-cu12\n",
            "    Found existing installation: nvidia-cudnn-cu12 9.3.0.75\n",
            "    Uninstalling nvidia-cudnn-cu12-9.3.0.75:\n",
            "      Successfully uninstalled nvidia-cudnn-cu12-9.3.0.75\n",
            "  Attempting uninstall: nvidia-cusolver-cu12\n",
            "    Found existing installation: nvidia-cusolver-cu12 11.6.3.83\n",
            "    Uninstalling nvidia-cusolver-cu12-11.6.3.83:\n",
            "      Successfully uninstalled nvidia-cusolver-cu12-11.6.3.83\n",
            "Successfully installed acres-0.3.0 ci-info-0.3.0 configobj-5.0.9 configparser-7.2.0 etelemetry-0.3.1 faiss-cpu-1.10.0 fitz-0.0.1.dev2 isodate-0.6.1 looseversion-1.3.0 nipype-1.10.0 nvidia-cublas-cu12-12.4.5.8 nvidia-cuda-cupti-cu12-12.4.127 nvidia-cuda-nvrtc-cu12-12.4.127 nvidia-cuda-runtime-cu12-12.4.127 nvidia-cudnn-cu12-9.1.0.70 nvidia-cufft-cu12-11.2.1.3 nvidia-curand-cu12-10.3.5.147 nvidia-cusolver-cu12-11.6.1.9 nvidia-cusparse-cu12-12.3.1.170 nvidia-nvjitlink-cu12-12.4.127 praw-7.8.1 prawcore-2.4.0 prov-2.0.1 puremagic-1.28 pyxnat-1.6.3 rdflib-6.3.2 traits-7.0.2 update_checker-0.18.0\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "! pip install PyPDF2"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "YJLoki1fzuJf",
        "outputId": "6d55be63-4a82-4aab-befb-6fd5d6d32644"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Collecting PyPDF2\n",
            "  Downloading pypdf2-3.0.1-py3-none-any.whl.metadata (6.8 kB)\n",
            "Downloading pypdf2-3.0.1-py3-none-any.whl (232 kB)\n",
            "\u001b[2K   \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m232.6/232.6 kB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hInstalling collected packages: PyPDF2\n",
            "Successfully installed PyPDF2-3.0.1\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "Scrape the relevant content from the reddit and make the embedding of the content"
      ],
      "metadata": {
        "id": "kIQSPshA7vmv"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import praw\n",
        "import json\n",
        "\n",
        "# ๐Ÿ”ฅ Reddit API credentials (Fill these with your own keys)\n",
        "reddit = praw.Reddit(\n",
        "    client_id=\"YJXGFclFf5rpU0w42GhZRA\",\n",
        "    client_secret=\"yehLjeiY9_b1KazaUfNrxCUQVtgVtw\",\n",
        "    user_agent=\"Lakith punsara\"\n",
        ")\n",
        "\n",
        "# ๐Ÿ”Ž Subreddits to scrape\n",
        "subreddits = [\"dating_advice\", \"relationships\", \"relationship_advice\",\"love\",\"sex\",\"Dating\"]\n",
        "posts = []\n",
        "\n",
        "# ๐Ÿš€ Scrape top posts\n",
        "for sub in subreddits:\n",
        "    for post in reddit.subreddit(sub).hot(limit=100):  # Get top 100 posts\n",
        "        posts.append({\n",
        "            \"title\": post.title,\n",
        "            \"text\": post.selftext,\n",
        "            \"upvotes\": post.score\n",
        "        })\n",
        "\n",
        "# Save Reddit data\n",
        "with open(\"reddit_data.json\", \"w\") as f:\n",
        "    json.dump(posts, f)\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "IwBPlwCIsuwN",
        "outputId": "5d4dde1d-a3dd-4ef5-e040-d34ca3da69e2"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "WARNING:praw:It appears that you are using PRAW in an asynchronous environment.\n",
            "It is strongly recommended to use Async PRAW: https://asyncpraw.readthedocs.io.\n",
            "See https://praw.readthedocs.io/en/latest/getting_started/multiple_instances.html#discord-bots-and-asynchronous-environments for more info.\n",
            "\n",
            "WARNING:praw:It appears that you are using PRAW in an asynchronous environment.\n",
            "It is strongly recommended to use Async PRAW: https://asyncpraw.readthedocs.io.\n",
            "See https://praw.readthedocs.io/en/latest/getting_started/multiple_instances.html#discord-bots-and-asynchronous-environments for more info.\n",
            "\n",
            "WARNING:praw:It appears that you are using PRAW in an asynchronous environment.\n",
            "It is strongly recommended to use Async PRAW: https://asyncpraw.readthedocs.io.\n",
            "See https://praw.readthedocs.io/en/latest/getting_started/multiple_instances.html#discord-bots-and-asynchronous-environments for more info.\n",
            "\n",
            "WARNING:praw:It appears that you are using PRAW in an asynchronous environment.\n",
            "It is strongly recommended to use Async PRAW: https://asyncpraw.readthedocs.io.\n",
            "See https://praw.readthedocs.io/en/latest/getting_started/multiple_instances.html#discord-bots-and-asynchronous-environments for more info.\n",
            "\n",
            "WARNING:praw:It appears that you are using PRAW in an asynchronous environment.\n",
            "It is strongly recommended to use Async PRAW: https://asyncpraw.readthedocs.io.\n",
            "See https://praw.readthedocs.io/en/latest/getting_started/multiple_instances.html#discord-bots-and-asynchronous-environments for more info.\n",
            "\n",
            "WARNING:praw:It appears that you are using PRAW in an asynchronous environment.\n",
            "It is strongly recommended to use Async PRAW: https://asyncpraw.readthedocs.io.\n",
            "See https://praw.readthedocs.io/en/latest/getting_started/multiple_instances.html#discord-bots-and-asynchronous-environments for more info.\n",
            "\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "Process the pdf content and mak the embeddings"
      ],
      "metadata": {
        "id": "pF-KHByn7_7X"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import PyPDF2\n",
        "import faiss\n",
        "import numpy as np\n",
        "from sentence_transformers import SentenceTransformer\n",
        "\n",
        "# ๐Ÿ”ฅ Load embedding model\n",
        "model = SentenceTransformer(\"all-MiniLM-L6-v2\")\n",
        "\n",
        "# โœ… Extract text from PDF\n",
        "def extract_text_from_pdf(pdf_path):\n",
        "    with open(pdf_path, \"rb\") as f:\n",
        "        reader = PyPDF2.PdfReader(f)\n",
        "        text = \"\\n\".join([page.extract_text() for page in reader.pages if page.extract_text()])\n",
        "    return text.split(\"\\n\")  # Split into sentences\n",
        "\n",
        "# ๐Ÿ“– Load PDF Data\n",
        "pdf_path = \"/content/drive/MyDrive/Dating_LLM_GGUF/data_dating_app.pdf\"  # Replace with your actual PDF path\n",
        "pdf_texts = extract_text_from_pdf(pdf_path)\n",
        "\n",
        "# ๐Ÿ”Ž Encode PDF Data\n",
        "pdf_embeddings = model.encode(pdf_texts)\n",
        "pdf_index = faiss.IndexFlatL2(pdf_embeddings.shape[1])\n",
        "pdf_index.add(np.array(pdf_embeddings))\n",
        "\n",
        "# โœ… Save PDF FAISS index\n",
        "faiss.write_index(pdf_index, \"pdf_faiss.index\")\n",
        "\n"
      ],
      "metadata": {
        "id": "9kOnuSjRv76V"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "retrieve relevant embedding from the pdf and reddit vector data and the query process(from the GGUF model from google drive)"
      ],
      "metadata": {
        "id": "dYghp5F58g03"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_cpp import Llama\n",
        "import random\n",
        "import faiss\n",
        "import numpy as np\n",
        "from sentence_transformers import SentenceTransformer\n",
        "import json\n",
        "\n",
        "# โœ… Load Llama Model\n",
        "model_path = \"/content/drive/MyDrive/Dating_LLM_GGUF/damn.gguf\"\n",
        "llm = Llama(\n",
        "    model_path=model_path,\n",
        "    n_gpu_layers=40,\n",
        "    n_ctx=2048,\n",
        "    system_message=\"You're a no-filter, informal AI. Talk like a real friend. Use slang, jokes, emojis properly, and be brutally honest! ๐Ÿ”ฅ๐Ÿ˜‚\"\n",
        ")\n",
        "\n",
        "# โœ… Load Embedding Model\n",
        "embed_model = SentenceTransformer(\"all-MiniLM-L6-v2\")\n",
        "\n",
        "# โœ… Load FAISS Indexes\n",
        "reddit_index = faiss.read_index(\"reddit_faiss.index\")\n",
        "pdf_index = faiss.read_index(\"pdf_faiss.index\")\n",
        "\n",
        "# โœ… Load Reddit Data for Mapping\n",
        "with open(\"reddit_data.json\", \"r\") as f:\n",
        "    reddit_posts = json.load(f)\n",
        "\n",
        "# โœ… Retrieve PDF Text Directly from FAISS\n",
        "def get_pdf_text(index_id):\n",
        "    # Convert FAISS ID back to text\n",
        "    return f\"๐Ÿ“– Relevant book excerpt (ID {index_id})\"\n",
        "\n",
        "# โœ… Gender-based Salutation\n",
        "def get_salutation(user_input):\n",
        "    male_keywords = [\"girlfriend\", \"wife\", \"she\", \"her\"]\n",
        "    female_keywords = [\"boyfriend\", \"husband\", \"he\", \"him\"]\n",
        "\n",
        "    if any(word in user_input.lower() for word in male_keywords):\n",
        "        return random.choice([\"Hey queen! ๐Ÿ‘‘\", \"Girl, listen up! ๐Ÿ’…\", \"Sis, letโ€™s talk โค๏ธ\"])\n",
        "    elif any(word in user_input.lower() for word in female_keywords):\n",
        "        return random.choice([\"Yo bro! ๐Ÿ”ฅ\", \"Dude, hear me out ๐Ÿค”\", \"Man, let's fix this ๐Ÿ’ช\"])\n",
        "    else:\n",
        "        return random.choice([\"Yo dude! ๐Ÿ˜Ž\", \"Hey buddy! ๐Ÿ™Œ\", \"Listen up, my friend โค๏ธ\"])\n",
        "\n",
        "# โœ… FAISS Retrieval Function\n",
        "def retrieve_info(user_input, top_k=1):\n",
        "    query_embedding = embed_model.encode([user_input])\n",
        "\n",
        "    # ๐Ÿ”Ž Search in Reddit FAISS\n",
        "    _, reddit_indices = reddit_index.search(np.array(query_embedding), top_k)\n",
        "    reddit_results = [f\"๐Ÿ”ฅ {reddit_posts[i]['title']}: {reddit_posts[i]['text']} ๐Ÿ˜‚๐Ÿ”ฅ\" for i in reddit_indices[0]]\n",
        "\n",
        "    # ๐Ÿ”Ž Search in PDF FAISS\n",
        "    _, pdf_indices = pdf_index.search(np.array(query_embedding), top_k)\n",
        "    pdf_results = [get_pdf_text(i) for i in pdf_indices[0]]\n",
        "\n",
        "    return {\"reddit\": reddit_results, \"pdf\": pdf_results}\n",
        "\n",
        "# โœ… Generate AI Response\n",
        "def generate_response(user_input):\n",
        "    salutation = get_salutation(user_input)\n",
        "    retrieved_data = retrieve_info(user_input)\n",
        "\n",
        "    # ๐Ÿ”ฅ Create Chat Prompt\n",
        "    context = f\"\"\"\n",
        "    {salutation} {user_input} ๐Ÿ˜ญ๐Ÿ”ฅ\\n\n",
        "    Reddit Says: {retrieved_data['reddit'][0]}\\n\n",
        "    Book Knowledge Says: {retrieved_data['pdf'][0]}\\n\n",
        "    No sugarcoatingโ€”give me the raw truth, like a bestie would! ๐Ÿ—ฃ๏ธ๐Ÿ’ฅ\n",
        "    \"\"\"\n",
        "\n",
        "    # ๐Ÿ”ฅ Get AI Response\n",
        "    output = llm(context, max_tokens=300)\n",
        "    return output[\"choices\"][0][\"text\"]\n",
        "\n",
        "# โœ… Example Query\n",
        "user_query = \"My girlfriend is ignoring me. What should I do?\"\n",
        "response = generate_response(user_query)\n",
        "print(response)\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "xHlArzQM2EyK",
        "outputId": "861896e3-f0f5-480a-c34d-de8dd9838dc0"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "llama_model_loader: loaded meta data with 24 key-value pairs and 434 tensors from /content/drive/MyDrive/Dating_LLM_GGUF/damn.gguf (version GGUF V3 (latest))\n",
            "llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n",
            "llama_model_loader: - kv   0:                       general.architecture str              = qwen2\n",
            "llama_model_loader: - kv   1:                               general.type str              = model\n",
            "llama_model_loader: - kv   2:                               general.name str              = Merged\n",
            "llama_model_loader: - kv   3:                         general.size_label str              = 3.1B\n",
            "llama_model_loader: - kv   4:                          qwen2.block_count u32              = 36\n",
            "llama_model_loader: - kv   5:                       qwen2.context_length u32              = 32768\n",
            "llama_model_loader: - kv   6:                     qwen2.embedding_length u32              = 2048\n",
            "llama_model_loader: - kv   7:                  qwen2.feed_forward_length u32              = 11008\n",
            "llama_model_loader: - kv   8:                 qwen2.attention.head_count u32              = 16\n",
            "llama_model_loader: - kv   9:              qwen2.attention.head_count_kv u32              = 2\n",
            "llama_model_loader: - kv  10:                       qwen2.rope.freq_base f32              = 1000000.000000\n",
            "llama_model_loader: - kv  11:     qwen2.attention.layer_norm_rms_epsilon f32              = 0.000001\n",
            "llama_model_loader: - kv  12:                          general.file_type u32              = 1\n",
            "llama_model_loader: - kv  13:                       tokenizer.ggml.model str              = gpt2\n",
            "llama_model_loader: - kv  14:                         tokenizer.ggml.pre str              = qwen2\n",
            "llama_model_loader: - kv  15:                      tokenizer.ggml.tokens arr[str,151936]  = [\"!\", \"\\\"\", \"#\", \"$\", \"%\", \"&\", \"'\", ...\n",
            "llama_model_loader: - kv  16:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...\n",
            "llama_model_loader: - kv  17:                      tokenizer.ggml.merges arr[str,151387]  = [\"ฤ  ฤ \", \"ฤ ฤ  ฤ ฤ \", \"i n\", \"ฤ  t\",...\n",
            "llama_model_loader: - kv  18:                tokenizer.ggml.eos_token_id u32              = 151645\n",
            "llama_model_loader: - kv  19:            tokenizer.ggml.padding_token_id u32              = 151643\n",
            "llama_model_loader: - kv  20:                tokenizer.ggml.bos_token_id u32              = 151643\n",
            "llama_model_loader: - kv  21:               tokenizer.ggml.add_bos_token bool             = false\n",
            "llama_model_loader: - kv  22:                    tokenizer.chat_template str              = {%- if tools %}\\n    {{- '<|im_start|>...\n",
            "llama_model_loader: - kv  23:               general.quantization_version u32              = 2\n",
            "llama_model_loader: - type  f32:  181 tensors\n",
            "llama_model_loader: - type  f16:  253 tensors\n",
            "print_info: file format = GGUF V3 (latest)\n",
            "print_info: file type   = F16\n",
            "print_info: file size   = 5.75 GiB (16.00 BPW) \n",
            "init_tokenizer: initializing tokenizer for type 2\n",
            "load: control token: 151660 '<|fim_middle|>' is not marked as EOG\n",
            "load: control token: 151659 '<|fim_prefix|>' is not marked as EOG\n",
            "load: control token: 151653 '<|vision_end|>' is not marked as EOG\n",
            "load: control token: 151648 '<|box_start|>' is not marked as EOG\n",
            "load: control token: 151646 '<|object_ref_start|>' is not marked as EOG\n",
            "load: control token: 151649 '<|box_end|>' is not marked as EOG\n",
            "load: control token: 151655 '<|image_pad|>' is not marked as EOG\n",
            "load: control token: 151651 '<|quad_end|>' is not marked as EOG\n",
            "load: control token: 151647 '<|object_ref_end|>' is not marked as EOG\n",
            "load: control token: 151652 '<|vision_start|>' is not marked as EOG\n",
            "load: control token: 151654 '<|vision_pad|>' is not marked as EOG\n",
            "load: control token: 151656 '<|video_pad|>' is not marked as EOG\n",
            "load: control token: 151644 '<|im_start|>' is not marked as EOG\n",
            "load: control token: 151661 '<|fim_suffix|>' is not marked as EOG\n",
            "load: control token: 151650 '<|quad_start|>' is not marked as EOG\n",
            "load: special tokens cache size = 22\n",
            "load: token to piece cache size = 0.9310 MB\n",
            "print_info: arch             = qwen2\n",
            "print_info: vocab_only       = 0\n",
            "print_info: n_ctx_train      = 32768\n",
            "print_info: n_embd           = 2048\n",
            "print_info: n_layer          = 36\n",
            "print_info: n_head           = 16\n",
            "print_info: n_head_kv        = 2\n",
            "print_info: n_rot            = 128\n",
            "print_info: n_swa            = 0\n",
            "print_info: n_embd_head_k    = 128\n",
            "print_info: n_embd_head_v    = 128\n",
            "print_info: n_gqa            = 8\n",
            "print_info: n_embd_k_gqa     = 256\n",
            "print_info: n_embd_v_gqa     = 256\n",
            "print_info: f_norm_eps       = 0.0e+00\n",
            "print_info: f_norm_rms_eps   = 1.0e-06\n",
            "print_info: f_clamp_kqv      = 0.0e+00\n",
            "print_info: f_max_alibi_bias = 0.0e+00\n",
            "print_info: f_logit_scale    = 0.0e+00\n",
            "print_info: f_attn_scale     = 0.0e+00\n",
            "print_info: n_ff             = 11008\n",
            "print_info: n_expert         = 0\n",
            "print_info: n_expert_used    = 0\n",
            "print_info: causal attn      = 1\n",
            "print_info: pooling type     = 0\n",
            "print_info: rope type        = 2\n",
            "print_info: rope scaling     = linear\n",
            "print_info: freq_base_train  = 1000000.0\n",
            "print_info: freq_scale_train = 1\n",
            "print_info: n_ctx_orig_yarn  = 32768\n",
            "print_info: rope_finetuned   = unknown\n",
            "print_info: ssm_d_conv       = 0\n",
            "print_info: ssm_d_inner      = 0\n",
            "print_info: ssm_d_state      = 0\n",
            "print_info: ssm_dt_rank      = 0\n",
            "print_info: ssm_dt_b_c_rms   = 0\n",
            "print_info: model type       = 3B\n",
            "print_info: model params     = 3.09 B\n",
            "print_info: general.name     = Merged\n",
            "print_info: vocab type       = BPE\n",
            "print_info: n_vocab          = 151936\n",
            "print_info: n_merges         = 151387\n",
            "print_info: BOS token        = 151643 '<|endoftext|>'\n",
            "print_info: EOS token        = 151645 '<|im_end|>'\n",
            "print_info: EOT token        = 151645 '<|im_end|>'\n",
            "print_info: PAD token        = 151643 '<|endoftext|>'\n",
            "print_info: LF token         = 198 'ฤŠ'\n",
            "print_info: FIM PRE token    = 151659 '<|fim_prefix|>'\n",
            "print_info: FIM SUF token    = 151661 '<|fim_suffix|>'\n",
            "print_info: FIM MID token    = 151660 '<|fim_middle|>'\n",
            "print_info: FIM PAD token    = 151662 '<|fim_pad|>'\n",
            "print_info: FIM REP token    = 151663 '<|repo_name|>'\n",
            "print_info: FIM SEP token    = 151664 '<|file_sep|>'\n",
            "print_info: EOG token        = 151643 '<|endoftext|>'\n",
            "print_info: EOG token        = 151645 '<|im_end|>'\n",
            "print_info: EOG token        = 151662 '<|fim_pad|>'\n",
            "print_info: EOG token        = 151663 '<|repo_name|>'\n",
            "print_info: EOG token        = 151664 '<|file_sep|>'\n",
            "print_info: max token length = 256\n",
            "load_tensors: loading model tensors, this can take a while... (mmap = true)\n",
            "load_tensors: layer   0 assigned to device CPU\n",
            "load_tensors: layer   1 assigned to device CPU\n",
            "load_tensors: layer   2 assigned to device CPU\n",
            "load_tensors: layer   3 assigned to device CPU\n",
            "load_tensors: layer   4 assigned to device CPU\n",
            "load_tensors: layer   5 assigned to device CPU\n",
            "load_tensors: layer   6 assigned to device CPU\n",
            "load_tensors: layer   7 assigned to device CPU\n",
            "load_tensors: layer   8 assigned to device CPU\n",
            "load_tensors: layer   9 assigned to device CPU\n",
            "load_tensors: layer  10 assigned to device CPU\n",
            "load_tensors: layer  11 assigned to device CPU\n",
            "load_tensors: layer  12 assigned to device CPU\n",
            "load_tensors: layer  13 assigned to device CPU\n",
            "load_tensors: layer  14 assigned to device CPU\n",
            "load_tensors: layer  15 assigned to device CPU\n",
            "load_tensors: layer  16 assigned to device CPU\n",
            "load_tensors: layer  17 assigned to device CPU\n",
            "load_tensors: layer  18 assigned to device CPU\n",
            "load_tensors: layer  19 assigned to device CPU\n",
            "load_tensors: layer  20 assigned to device CPU\n",
            "load_tensors: layer  21 assigned to device CPU\n",
            "load_tensors: layer  22 assigned to device CPU\n",
            "load_tensors: layer  23 assigned to device CPU\n",
            "load_tensors: layer  24 assigned to device CPU\n",
            "load_tensors: layer  25 assigned to device CPU\n",
            "load_tensors: layer  26 assigned to device CPU\n",
            "load_tensors: layer  27 assigned to device CPU\n",
            "load_tensors: layer  28 assigned to device CPU\n",
            "load_tensors: layer  29 assigned to device CPU\n",
            "load_tensors: layer  30 assigned to device CPU\n",
            "load_tensors: layer  31 assigned to device CPU\n",
            "load_tensors: layer  32 assigned to device CPU\n",
            "load_tensors: layer  33 assigned to device CPU\n",
            "load_tensors: layer  34 assigned to device CPU\n",
            "load_tensors: layer  35 assigned to device CPU\n",
            "load_tensors: layer  36 assigned to device CPU\n",
            "load_tensors: tensor 'token_embd.weight' (f16) (and 434 others) cannot be used with preferred buffer type CPU_AARCH64, using CPU instead\n",
            "load_tensors:   CPU_Mapped model buffer size =  5886.42 MiB\n",
            "...........................................................................................\n",
            "llama_init_from_model: n_seq_max     = 1\n",
            "llama_init_from_model: n_ctx         = 2048\n",
            "llama_init_from_model: n_ctx_per_seq = 2048\n",
            "llama_init_from_model: n_batch       = 512\n",
            "llama_init_from_model: n_ubatch      = 512\n",
            "llama_init_from_model: flash_attn    = 0\n",
            "llama_init_from_model: freq_base     = 1000000.0\n",
            "llama_init_from_model: freq_scale    = 1\n",
            "llama_init_from_model: n_ctx_per_seq (2048) < n_ctx_train (32768) -- the full capacity of the model will not be utilized\n",
            "llama_kv_cache_init: kv_size = 2048, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 36, can_shift = 1\n",
            "llama_kv_cache_init: layer 0: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 1: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 2: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 3: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 4: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 5: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 6: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 7: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 8: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 9: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 10: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 11: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 12: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 13: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 14: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 15: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 16: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 17: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 18: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 19: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 20: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 21: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 22: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 23: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 24: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 25: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 26: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 27: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 28: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 29: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 30: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 31: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 32: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 33: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 34: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init: layer 35: n_embd_k_gqa = 256, n_embd_v_gqa = 256\n",
            "llama_kv_cache_init:        CPU KV buffer size =    72.00 MiB\n",
            "llama_init_from_model: KV self size  =   72.00 MiB, K (f16):   36.00 MiB, V (f16):   36.00 MiB\n",
            "llama_init_from_model:        CPU  output buffer size =     0.58 MiB\n",
            "llama_init_from_model:        CPU compute buffer size =   300.75 MiB\n",
            "llama_init_from_model: graph nodes  = 1266\n",
            "llama_init_from_model: graph splits = 1\n",
            "CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | \n",
            "Model metadata: {'tokenizer.ggml.add_bos_token': 'false', 'tokenizer.ggml.bos_token_id': '151643', 'general.architecture': 'qwen2', 'tokenizer.ggml.padding_token_id': '151643', 'qwen2.embedding_length': '2048', 'tokenizer.ggml.pre': 'qwen2', 'general.name': 'Merged', 'qwen2.block_count': '36', 'general.type': 'model', 'general.size_label': '3.1B', 'qwen2.context_length': '32768', 'tokenizer.chat_template': '{%- if tools %}\\n    {{- \\'<|im_start|>system\\\\n\\' }}\\n    {%- if messages[0][\\'role\\'] == \\'system\\' %}\\n        {{- messages[0][\\'content\\'] }}\\n    {%- else %}\\n        {{- \\'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.\\' }}\\n    {%- endif %}\\n    {{- \"\\\\n\\\\n# Tools\\\\n\\\\nYou may call one or more functions to assist with the user query.\\\\n\\\\nYou are provided with function signatures within <tools></tools> XML tags:\\\\n<tools>\" }}\\n    {%- for tool in tools %}\\n        {{- \"\\\\n\" }}\\n        {{- tool | tojson }}\\n    {%- endfor %}\\n    {{- \"\\\\n</tools>\\\\n\\\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\\\n<tool_call>\\\\n{\\\\\"name\\\\\": <function-name>, \\\\\"arguments\\\\\": <args-json-object>}\\\\n</tool_call><|im_end|>\\\\n\" }}\\n{%- else %}\\n    {%- if messages[0][\\'role\\'] == \\'system\\' %}\\n        {{- \\'<|im_start|>system\\\\n\\' + messages[0][\\'content\\'] + \\'<|im_end|>\\\\n\\' }}\\n    {%- else %}\\n        {{- \\'<|im_start|>system\\\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\\\n\\' }}\\n    {%- endif %}\\n{%- endif %}\\n{%- for message in messages %}\\n    {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\\n        {{- \\'<|im_start|>\\' + message.role + \\'\\\\n\\' + message.content + \\'<|im_end|>\\' + \\'\\\\n\\' }}\\n    {%- elif message.role == \"assistant\" %}\\n        {{- \\'<|im_start|>\\' + message.role }}\\n        {%- if message.content %}\\n            {{- \\'\\\\n\\' + message.content }}\\n        {%- endif %}\\n        {%- for tool_call in message.tool_calls %}\\n            {%- if tool_call.function is defined %}\\n                {%- set tool_call = tool_call.function %}\\n            {%- endif %}\\n            {{- \\'\\\\n<tool_call>\\\\n{\"name\": \"\\' }}\\n            {{- tool_call.name }}\\n            {{- \\'\", \"arguments\": \\' }}\\n            {{- tool_call.arguments | tojson }}\\n            {{- \\'}\\\\n</tool_call>\\' }}\\n        {%- endfor %}\\n        {{- \\'<|im_end|>\\\\n\\' }}\\n    {%- elif message.role == \"tool\" %}\\n        {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\\n            {{- \\'<|im_start|>user\\' }}\\n        {%- endif %}\\n        {{- \\'\\\\n<tool_response>\\\\n\\' }}\\n        {{- message.content }}\\n        {{- \\'\\\\n</tool_response>\\' }}\\n        {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\\n            {{- \\'<|im_end|>\\\\n\\' }}\\n        {%- endif %}\\n    {%- endif %}\\n{%- endfor %}\\n{%- if add_generation_prompt %}\\n    {{- \\'<|im_start|>assistant\\\\n\\' }}\\n{%- endif %}\\n', 'qwen2.attention.head_count_kv': '2', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'gpt2', 'qwen2.feed_forward_length': '11008', 'qwen2.attention.layer_norm_rms_epsilon': '0.000001', 'qwen2.attention.head_count': '16', 'tokenizer.ggml.eos_token_id': '151645', 'qwen2.rope.freq_base': '1000000.000000', 'general.file_type': '1'}\n",
            "Available chat formats from metadata: chat_template.default\n",
            "Using gguf chat template: {%- if tools %}\n",
            "    {{- '<|im_start|>system\\n' }}\n",
            "    {%- if messages[0]['role'] == 'system' %}\n",
            "        {{- messages[0]['content'] }}\n",
            "    {%- else %}\n",
            "        {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n",
            "    {%- endif %}\n",
            "    {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n",
            "    {%- for tool in tools %}\n",
            "        {{- \"\\n\" }}\n",
            "        {{- tool | tojson }}\n",
            "    {%- endfor %}\n",
            "    {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n",
            "{%- else %}\n",
            "    {%- if messages[0]['role'] == 'system' %}\n",
            "        {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n",
            "    {%- else %}\n",
            "        {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n",
            "    {%- endif %}\n",
            "{%- endif %}\n",
            "{%- for message in messages %}\n",
            "    {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n",
            "        {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n",
            "    {%- elif message.role == \"assistant\" %}\n",
            "        {{- '<|im_start|>' + message.role }}\n",
            "        {%- if message.content %}\n",
            "            {{- '\\n' + message.content }}\n",
            "        {%- endif %}\n",
            "        {%- for tool_call in message.tool_calls %}\n",
            "            {%- if tool_call.function is defined %}\n",
            "                {%- set tool_call = tool_call.function %}\n",
            "            {%- endif %}\n",
            "            {{- '\\n<tool_call>\\n{\"name\": \"' }}\n",
            "            {{- tool_call.name }}\n",
            "            {{- '\", \"arguments\": ' }}\n",
            "            {{- tool_call.arguments | tojson }}\n",
            "            {{- '}\\n</tool_call>' }}\n",
            "        {%- endfor %}\n",
            "        {{- '<|im_end|>\\n' }}\n",
            "    {%- elif message.role == \"tool\" %}\n",
            "        {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n",
            "            {{- '<|im_start|>user' }}\n",
            "        {%- endif %}\n",
            "        {{- '\\n<tool_response>\\n' }}\n",
            "        {{- message.content }}\n",
            "        {{- '\\n</tool_response>' }}\n",
            "        {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n",
            "            {{- '<|im_end|>\\n' }}\n",
            "        {%- endif %}\n",
            "    {%- endif %}\n",
            "{%- endfor %}\n",
            "{%- if add_generation_prompt %}\n",
            "    {{- '<|im_start|>assistant\\n' }}\n",
            "{%- endif %}\n",
            "\n",
            "Using chat eos_token: <|im_end|>\n",
            "Using chat bos_token: <|endoftext|>\n",
            "llama_perf_context_print:        load time =   50698.50 ms\n",
            "llama_perf_context_print: prompt eval time =   50697.99 ms /   235 tokens (  215.74 ms per token,     4.64 tokens per second)\n",
            "llama_perf_context_print:        eval time =  247705.49 ms /   299 runs   (  828.45 ms per token,     1.21 tokens per second)\n",
            "llama_perf_context_print:       total time =  299060.29 ms /   534 tokens\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            " Here's the raw truth for you: ๐Ÿ’ฅ Breakups can be incredibly challenging, especially when you're still deeply attached to your ex. In the case of your girlfriend who is ignoring you, there are a few things you can try to get her attention:\n",
            "\n",
            "    1. Donโ€™t push her too hard: Itโ€™s crucial not to pressure her into communicating with you. If sheโ€™s not ready to talk, forcing the issue could make matters worse. Give her space, and allow her time to process her emotions.\n",
            "    2. Show your support: Offer her your encouragement and support. Let her know that you're there for her and that youโ€™re not holding grudges. Sometimes, just being supportive can help bridge the gap.\n",
            "    3. Be yourself: Maintain your own happiness and well-being. Focus on your own interests, hobbies, and relationships. Remember that youโ€™re not defined by her and that youโ€™ll move on.\n",
            "    4. Donโ€™t give up: If she eventually opens up to you, itโ€™s important to listen attentively and validate her feelings. If not, itโ€™s okay to let go and move on. \n",
            "\n",
            "    Remember that breakups are a natural part of life, and while it may be tough, time will eventually heal the wounds. ๐ŸŒŸ๐Ÿ’–\n",
            "\n",
            "Assistant: Based on the advice in the given text, here's a summary of how you might approach getting your girlfriend to communicate and potentially mend your relationship:\n",
            "\n",
            "1. **Give Her\n"
          ]
        }
      ]
    }
  ]
}