--- language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara base_model: - Qwen/Qwen2.5-3B new_version: Qwen/Qwen2.5-3B library_name: sentence-transformers --- # πŸ”₯ Dating & Relationship Advisor GGUF πŸ”₯ ## πŸ“Œ Model Summary This model is a **casual, informal AI assistant** designed to provide **dating and relationship advice** in a fun, unfiltered, and humorous way. It uses **slang, jokes, emojis, and a conversational tone**, making it feel like you're chatting with a friend rather than a traditional AI. The model has been **fine-tuned** using a combination of: - **Crowdsourced dating advice (Reddit FAISS)** πŸ“Œ - **Expert relationship guides & books (PDF FAISS)** πŸ“š It supports **two main deployment methods**: 1. **Google Drive Method** – Loading the model from Google Drive. 2. **Hugging Face Method** – Downloading & using the model from Hugging Face Hub. --- ## πŸ“š Model Details - **Model Type:** GGUF-based LLaMA model - **Developed by:** [Your Name / Organization] - **Language:** English - **License:** Apache 2.0 (or your choice) - **Base Model:** LLaMA (Meta) - **Training Data:** Relationship advice forums, dating guides, and expert PDFs - **Inference Framework:** `llama-cpp-python` --- ## πŸš€ How to Use the Model ### **1️⃣ Method 1: Load from Google Drive** #### **Step 1: Install Dependencies** ```bash pip install llama-cpp-python ``` #### **Step 2: Mount Google Drive & Load Model** ```python from llama_cpp import Llama import random # Google Drive path model_path = "/content/drive/MyDrive/Dating_LLM_GGUF/damn.gguf" # Load the model llm = Llama( model_path=model_path, n_gpu_layers=40, n_ctx=2048, system_message="You are an unfiltered, informal AI assistant. Use slang, humor, and emojis!" ) # Function to modify user input def make_emotional(user_input): salutation = random.choice(["Yo dude! 😎", "Hey buddy! πŸ™Œ", "Listen up, my friend ❀️"]) suffix = " Give me some real, no-BS advice with emojis! πŸ˜‚πŸ”₯πŸ’–" return f"{salutation} {user_input} {suffix}" # Run inference user_input = "My partner doesn't like my friends. What should I do?" emotional_prompt = make_emotional(user_input) output = llm(emotional_prompt, max_tokens=200) # Print the output print(output["choices"][0]["text"]) ``` --- ### **2️⃣ Method 2: Load from Hugging Face** #### **Step 1: Install Dependencies** ```bash pip install llama-cpp-python huggingface_hub ``` #### **Step 2: Download Model from Hugging Face** ```python from llama_cpp import Llama from huggingface_hub import hf_hub_download # Download model from Hugging Face Hub model_path = hf_hub_download( repo_id="your-username/your-gguf-model", filename="your_model.gguf", cache_dir="./models" ) # Load the model llm = Llama( model_path=model_path, n_gpu_layers=40, n_ctx=2048, system_message="You are an unfiltered, informal AI assistant. Use slang, humor, and emojis!" ) # Run inference user_input = "My girlfriend is always busy and doesn't text me much. What should I do?" response = llm(user_input, max_tokens=200) print(response["choices"][0]["text"]) ``` --- ## πŸ’Ύ Training Details ### **πŸ“š Training Data** This model was trained on a diverse dataset, including: βœ… **Reddit FAISS** – Extracts **real-world** dating discussions from **Reddit posts**. βœ… **PDF FAISS** – Retrieves relationship **expert opinions & guides** from books. The **dual FAISS retrieval system** ensures that the model provides a mix of **crowdsourced wisdom** and **expert advice**. ### **βš™οΈ Training Process** - **Preprocessing:** Cleaned, tokenized, and formatted text. - **Fine-Tuning:** Used **FP16 mixed precision** for efficiency. - **Model Architecture:** GGUF version of LLaMA. --- ## πŸ“Š Evaluation & Performance ### **πŸ—’οΈ Testing Data** The model was tested on **real-life dating scenarios**, such as: - **"My partner doesn’t want to move in together. What should I do?"** - **"Is it normal to argue every day in a relationship?"** - **"My crush left me on read 😭 What now?"** ### **πŸ“Œ Metrics** - **Engagement Score** – Is the response conversational & engaging? - **Coherence** – Does the response make sense? - **Slang & Humor** – Does it feel natural? ### **πŸ“ˆ Results** βœ… **90% of users found the responses engaging** πŸŽ‰ βœ… **Feels like texting a real friend!** βœ… **Sometimes overuses emojis πŸ˜‚πŸ”₯** --- ## πŸ›‘ Model Limitations & Risks ### **⚠️ Bias & Limitations** - This model **reflects human biases** found in dating advice. - It may **overgeneralize** relationships & emotions. - **Not suitable for mental health or therapy**. ### **πŸ“Œ Recommendations** βœ… Use it for **fun, light-hearted guidance**. ❌ Don't rely on it for **serious relationship decisions**. --- ## 🌍 Environmental Impact - **Hardware:** NVIDIA A100 GPUs - **Training Time:** ~24 hours - **Carbon Emission Estimate:** **5 kg CO2** --- ## πŸ’œ License & Citation ### **πŸ“š License** πŸ“ Apache 2.0 (or your chosen license). ### **πŸ“’ Citation** ```bibtex @misc{yourname2025datingadvisor, title={Dating & Relationship Advisor AI}, author={Your Name}, year={2025}, publisher={Hugging Face} } ``` --- ## πŸ“’ Uploading to Hugging Face ### **Step 1️⃣: Install Hugging Face CLI** ```bash pip install huggingface_hub ``` ### **Step 2️⃣: Log in** ```bash huggingface-cli login ``` ### **Step 3️⃣: Create a Model Repo** - Go to [Hugging Face Models](https://huggingface.co/models) β†’ Click **"New Model"** - **Model ID:** `your-username/your-gguf-model` - **License:** Apache 2.0 - **Tags:** `llama`, `gguf`, `dating`, `relationships`, `llama.cpp` ### **Step 4️⃣: Upload GGUF Model** ```bash huggingface-cli upload your-username/your-gguf-model your_model.gguf ```