--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-sentiment-b16 results: [] --- # roberta-sentiment-b16 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8547 - F1 Macro: 0.6656 - F1 Weighted: 0.6666 - Accuracy: 0.6713 - Precision Macro: 0.6629 - Recall Macro: 0.6739 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Weighted | Accuracy | Precision Macro | Recall Macro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:---------------:|:------------:| | 1.0883 | 1.0 | 241 | 0.9511 | 0.4626 | 0.4704 | 0.5317 | 0.5065 | 0.5293 | | 0.8226 | 2.0 | 482 | 0.7453 | 0.6783 | 0.6819 | 0.6816 | 0.6879 | 0.6735 | | 0.6465 | 3.0 | 723 | 0.7917 | 0.6843 | 0.6879 | 0.6993 | 0.6929 | 0.6948 | | 0.5062 | 4.0 | 964 | 0.8112 | 0.6898 | 0.6922 | 0.6951 | 0.6882 | 0.6934 | | 0.3937 | 5.0 | 1205 | 0.9096 | 0.6829 | 0.6822 | 0.6774 | 0.6989 | 0.6844 | | 0.2821 | 6.0 | 1446 | 1.0649 | 0.6833 | 0.6861 | 0.6878 | 0.6813 | 0.6869 | | 0.209 | 7.0 | 1687 | 1.2212 | 0.6824 | 0.6844 | 0.6826 | 0.6851 | 0.6804 | ### Framework versions - Transformers 4.57.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.1