--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-sentiment results: [] --- # roberta-sentiment This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2590 - F1 Macro: 0.6890 - F1 Weighted: 0.6901 - Accuracy: 0.6889 - Precision Macro: 0.6897 - Recall Macro: 0.6887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Weighted | Accuracy | Precision Macro | Recall Macro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:---------------:|:------------:| | 1.0468 | 1.0 | 961 | 1.0346 | 0.5895 | 0.5948 | 0.5963 | 0.5980 | 0.5862 | | 0.9324 | 2.0 | 1922 | 0.8973 | 0.6675 | 0.6697 | 0.6743 | 0.6670 | 0.6768 | | 0.7848 | 3.0 | 2883 | 0.9689 | 0.6599 | 0.6632 | 0.6712 | 0.6624 | 0.6652 | | 0.7983 | 4.0 | 3844 | 1.3608 | 0.6753 | 0.6805 | 0.6805 | 0.6889 | 0.6701 | | 0.7084 | 5.0 | 4805 | 1.3093 | 0.6906 | 0.6922 | 0.6899 | 0.6938 | 0.6891 | | 0.5763 | 6.0 | 5766 | 1.7146 | 0.6799 | 0.6830 | 0.6805 | 0.6857 | 0.6768 | | 0.4508 | 7.0 | 6727 | 2.0875 | 0.6738 | 0.6773 | 0.6795 | 0.6770 | 0.6726 | | 0.2905 | 8.0 | 7688 | 2.2861 | 0.6676 | 0.6700 | 0.6670 | 0.6709 | 0.6669 | ### Framework versions - Transformers 4.57.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.1